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1. Introduction 

 The conventional economic paradigm of research and development as a linear process has, at 

least since the Second World War, applied a convenient shorthand of ‘basic’ research, ‘applied’ 

research, and product ‘development,’ assumed to follow causally in some sense one from the 

other (Bush 1945; National Science Board 2003). This intuitive framework has informed science 

and technology policy at all levels and has profoundly shaped the public’s image of research 

activities carried out at federal laboratories and universities at public expense. One of the 

fundamental economic justifications for the public financing of knowledge creation has hinged on 

the ‘public good’ nature of knowledge, distinguishing basic research as that which generates 

results with more public-good attributes and broader impacts on economic and social welfare 

from applied research as that which generates results with more private-good attributes that are 

more likely to benefit private agents positioned to capture the associated rents. As such, the linear 

paradigm represents more the terms of a political-economic compromise over public funding of 

research than it does a definitive description of real R&D processes.  

 The conventional linear paradigm has, as a result, been consistently challenged by observers 

of the complex and multidimensional nature of real R&D processes. Some have noted that both 

practical utility and greater understanding provide crucial motivation and justification to spending 

on even the most basic of research programs (Rosenberg and Nelson 1994; Stokes 1997). Others 

have pointed to the dynamics of feedback and convergence flowing from mere technological 

applications to inform and advance basic science (Kealey 1996; Mowery 1995). While, in theory, 

the need for public provision of pure public goods is uncontroversial, the results of publicly 

supported research have not always evidenced an efficient or equitably distributed public benefit, 

at least in the short term.  

 In one major area of publicly funded R&D, that supporting agricultural production, the 

‘basic’ versus ‘applied’ distinction has never been quite as clear as that made in the post-World-



3 

War linear paradigm. Regardless, since the 1860s significant large public financial commitments 

have been made through the Land Grant system of U.S. universities, in effect designed to deliver 

private economic gains and practical results for students educated within the system, for farmers 

aided by advances in farming technologies and genetic materials, and for consumers provided 

with an ever cheaper and more abundant food supply (Alston, Norton, and Pardey 1995; Sunding 

and Zilberman 2001; Williams, 1991). Recently, in the agricultural life sciences, what might be 

considered some of the most basic research, namely work in molecular biology and recombinant 

DNA, has often stood very close to the market place, blurring the distinction between basic and 

applied research and the public versus private aspects of the knowledge assets thereby produced 

(Rausser 2001; Wright 1998, 2001). 

 In the agricultural life sciences the question has intensified since biotechnology arose in the 

1970s and 1980s out of both publicly and privately funded R&D. The new biologically based 

technological regime has shaken up a relatively stable status quo in the division of innovative 

labor in mechanically and chemically intensive agriculture, challenging intersectoral relationships 

and giving rise to new arrangements for generating and appropriating value from innovation, in 

the wake of which a number of fundamental economic and research policy questions have 

emerged and persisted. Have the roles of public and private sector researchers become 

indistinguishable, as corporations invest private funds in projects—such as sequencing the 

genomes of important crop species—that could, and perhaps should be deemed as scientific 

public goods, while at the same time university and government laboratories make commercially 

valuable discoveries, such as genes, which they then privatize via patents, to be developed and 

marketed by private firms? Are universities and government laboratories being subsidized by the 

public to provide mere substitutes—of knowledge and technology—in a market where industry is 

now, in fact, not underinvesting? Still, how prevalent have the private sector corporations been in 

the creation of the very fundamental breakthrough technologies? And how effective have venture 
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funded biotechnology entrepreneurs been as vehicles for technology development? While much 

has been made of these questions in recent debate, little systematic empirical work has 

documented the differences between the various sources of biological innovation for agriculture 

to provide sound basis for policy in agricultural R&D and more generally concerning the role and 

context of university R&D in driving entrepreneurship and economic development.  

 We suggest that one of the sources of sectoral R&D role confusion lies in a failure to 

accurately reconcile evolutionary economic theories on how heterogeneous technologies tend to 

emerge over time with predictions of theory that organizations in different sectors of the economy 

should enjoy different comparative advantages in R&D activities and output. Existing theories on 

innovation suggest that basic exploratory research serves, with some probability, to create the 

new problem-solving paradigms that, if successful, initiate new ‘technological trajectories’, 

temporal sequences of technological developments within a narrowly defined problem solving 

paradigm that result in new commercial processes or products. What we are questioning, in 

essence, is whether the common ‘linear hypothesis’ of innovation suffices to explain the different 

roles of public and private agricultural R&D, given instances of public R&D yielding some 

private-goods-like innovations and private R&D yielding some public-goods-like innovations. A 

simple comparative advantage argument suggests that, as a result of different organizational 

endowments and characteristics of the sectors, publicly funded researchers are more likely to 

specialize in more uncertain exploratory research and privately funded researchers will specialize 

in more narrowly focused, certain, and appropriable research. 

 We test several hypotheses implied by this idea using a comprehensive U.S. patent data set on 

life science inventions with relevance for crop agriculture granted from 1973 to 2001. Detailed 

data about the technological characteristics of each patent in the dataset are compiled from front 

page information and used to estimate the structure of the field’s evolution by arranging the 

inventions into a pylogenetic tree using methods borrowed from biological systematics. The tree 
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is used to identify the most significant technological trajectories emerging during these formative 

years of the agricultural biotechnology industry. Assignee designations on the patents are used to 

identify the type of organization that generated each invention--whether a government laboratory, 

a university, a non-profit research organization, an individual inventor, an entrepreneurial startup 

firm, or an established corporate firm. We also calculate established citations-based indices that 

proxy for a patent’s quality, value, originality, generality, and appropriability (Hall, Jaffe, and 

Trajtenberg, 2001). Finally, within the technological trajectories framework we develop 

multinomial regressions that allow for partial correlation analysis capable of testing the 

hypotheses of sectoral specialization. 

 Patents are particularly useful for this exercise as they are a common measure across sectors 

of commercially relevant R&D output in agriculture. Whereas in other industries government and 

university patenting make an almost insignificant contribution—less than 3 percent on average, 

according to USPTO summary data—in the field of agricultural biotechnology we have found 

that government and university R&D contributes upwards of 25 percent of the U.S. patents, 

meaning that systematic comparison across sectors at an industry level of analysis is possible. 

The greatest drawback of using patent data is, of course, that not all inventions are patented, and 

differences in institutional significance of patents result in different propensities to patent across 

sectors. For example, economically significant inventions made at universities often show up in 

published research papers, not in patents, while many inventions made within companies are kept 

secret altogether. It is also important to note that the use of patent data necessarily constrains the 

investigation to issues of the original inventorship and not the current ownership of the 

technologies claimed in the patents. This is because a U.S. patent documents list only the names 

of the organizations to whom the property rights are originally assigned when the patent is 

granted; neither the patent document nor the patent office keeps a running record of who 

currently holds title to the property rights. For this reason, the questions investigated in this study 
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concern only the economics of the generation of the new technologies and not their subsequent 

redistribution. 

 The results show that the data are consistent, both before and after controlling for the patents’ 

places within specific technological trajectories, with systematic differences in innovation across 

sectors as predicted by a broad interpretation of the linear hypothesis. At the same time, these 

preliminary results reemphasize warnings often made in the literature against assuming a simple 

one-to-one relationship between basic and applied innovations, and provide clues for a more 

realistic albeit a more nuanced model of the innovation process to aid in considering R&D 

policies and strategies for organizations in the different sectors. 

 

2. Framework for analysis 

2.1. The theory of micro patterns in innovation: technological trajectories 

 Micro patterns of innovation have long been implicated in empirical studies of the 

determinants of R&D output (reviewed in Cohen 1995). Efforts to explain field-specific 

discrepancies or patterns in the rates and characteristics of innovation (Jaffe 1986; Levin, 

Klevorick, Nelson, Winter, Gilbert, and Griliches 1987; Scherer 1965) have led to the concept of 

the natural technological trajectory. Rosenberg (1969; 1974) describes innovative efforts as 

focused on solving a finite set of closely or sequentially related problems which he terms focusing 

devices or technological imperatives—bottlenecks, weak spots, and clear targets for 

improvement—resulting in compulsive sequences of innovations over time. Somewhat more 

focused on final markets, Abernathy and Utterback (1978; Utterback 1979) describe a technology 

life cycle with four phases: (1) the early experimental pre-paradigmatic phase, (2) the emergence 

of a dominant design, (3) the mature phase of refinement in which incremental innovations 
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decrease costs and exploit economies of scale, and finally (4) the phase of decline and 

obsolescence, until the dominant design is replaced by radically new technologies and a new 

cycle begins again. Nelson and Winter’s (1977) notion of technological regimes growing over 

time along natural technological trajectories contains may of the same elements discussed by 

Rosenberg and others and borrows, in addition, from the notion of R&D as a search mechanism 

(Evenson and Kislev 1976) and induced innovation theory (Binswanger 1974; Hayami and 

Ruttan 1985). Concerned with the relative inflexibility built into induced innovation models by 

deterministic conceptions of decision making in the R&D process, Nelson and Winter seek in 

their heuristic natural trajectories model to balance the simultaneous influences of demand pull 

and technology push in an explanation of the patterns of R&D output. They observe that R&D 

strategies adjust to the incentives and constraints of changing demand and cost conditions faced 

by the commercialized outputs of R&D as well as the fact that initiation and success of a given 

R&D project is a function of the expected time, cost, and feasibility of the project, which in turn 

depend on the general state of science and the technological knowledge base of the researchers 

and engineers being employed.  

 Sahal (1981) and Dosi (1982; 1988) take the concept further and characterize the 

technological regime as the set of parameters of the meta-production function of Hayami and 

Ruttan, the set of potentially feasible yet costly technological capabilities traded-off by the 

technology user under physical or budget constraints. Dosi argues that this is equivalent to 

ascribing a set of hedonic attributes (Lancaster 1966) to technologies, locating a particular set of 

coordinates in technology characteristics space around which individual innovations cluster to 

define a technological regime, either in the form of quantitative performance-cost characteristics 

as emphasized by Sahal or more cognitive or conceptual characteristics emphasized by Nelson 

and Winter. 



8 

 These theories suggest that new innovations arise as results from different points along a 

spectrum of R&D modes. The R&D mode at one end of the spectrum tends to be of a more 

original and exploratory nature, testing the limits of the possible and probing the frontiers of 

known technology characteristic space. Most of the outcomes of such original exploratory 

research are dead-ends. Occasionally, however, one of these exploratory searches may happen 

upon a particularly promising problem-solving paradigm—in both the sense of creating new 

technological opportunities and in the sense of showing new ways to meet market demand—and 

may initiate a move toward the other end of the R&D spectrum by enabling or inspiring follow-

on innovations. The original work may, then, in hindsight come to be considered as having been a 

breakthrough discovery or a radical innovation.  

 As the new idea and the attendant technical information for a successful problem-solving 

paradigm diffuse (either directly or indirectly) to other investigators working in the same area, 

success can beget success. Competitors may notice the threat of a new approach in solving an old 

problem and attempt with new vigor to build upon or to work around the ideas of the initial 

innovators. The diffusion of the new paradigm continues with the making of numerous 

refinements and improvements clustered at those coordinates in hedonic technology characteristic 

space that were first pinpointed by the original breakthrough.  

 As this focused cluster of innovations accumulate over time, they form a technological 

trajectory along the time axis at that set of coordinates within technology characteristic space. 

The generation of successful and prominent technological trajectories continues to be driven both 

from the innovation supply side, by each new development in the trajectory and its associated 

cost reductions, and drawn from the demand side, with express customer demand manifest in the 

adoption both by midstream technology users and by final consumers of the products created with 

or embodying the new technology.  
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2.2. Theories of organizational research capabilities 

 It should be noted that the preceding discussion contains no mention of the organizational or 

institutional nature of the agents—be they firms, individuals, universities, or governments—

expending resources and R&D efforts to generate innovations. Two lines of discussion tend to 

dominate in the economic literature exploring the differential capabilities of different kinds of 

organizations at generating innovations, one roughly traced to Schumpeter and the other roughly 

traced to Nelson and Arrow.  

 In the Schumpeterian tradition, discussion is largely focused on the private sector and the 

question of the relative advantages of established firms versus new entrants in innovation. 

Beginning with Scherer’s (1965) treatment, empirical studies have considered the effect of a 

broad range of firm characteristics in addition to size and market power on innovation—often 

controlling for field effects usually defined in terms of technological opportunity—relating firm 

characteristics to (homogeneous) quantities rather than (heterogeneous) qualities of the innovative 

output. Suggestive exceptions include Henderson (1993), whose framework effectively relates 

empirically different qualities of innovation—radical versus incremental and technical versus 

organizational—to characteristics of the firm, demonstrating that larger incumbent firms are more 

likely to pursue incremental innovation and less likely to pursue (disruptive) radical innovations. 

Cohen and Klepper (1996) show firm size giving a comparative advantage in exploiting process 

innovations relative to product innovations. In this Shumpeterian tradition public sector research 

is typically regarded as merely an exogenous factor creating technological opportunity to be 

exploited by the private sector agents that populate the models. 

 The theoretical notions posed by Nelson (1959) and Arrow (1962) concern a different 

economic question—that of the socially optimal provision of innovation given the uncertainty, 

inappropriability, and public-goods nature of the knowledge created—and the discussions that 

follow their lead largely focus on the tradeoffs between public and private sector provision of 



10 

R&D. Dasgupta and David (1994) examine how the different institutional structures and social 

communities of publicly supported ‘open science’ and privately financed ‘commercial 

technology’ influence the efficiency and output of these respective R&D systems. However it is 

Trajtenberg, Henderson, and Jaffe (1992) who propose empirical measures, adapted from 

bibliometric analysis, able to get at some of the more qualitative economic notions of ‘basicness’ 

and appropriability of individual inventions, with which they are able to show systematic 

differences between the more basic output of university research versus the more applied results 

of corporate R&D. 

 These theories suggest that, regardless of the sector in which they work, researchers can be 

considered to face a universal optimization problem: given the opportunities and incentives posed 

by their organizational environment as well as the budget and policy constraints they face, to 

maximize their own individual utility in pursuit of some combination of three fundamental 

sources of utility: fame, fortune, and freedom (Graff, Heiman, and Zilberman 2002). The specific 

incentives and constraints of the organizational environment include hiring and promotion 

practices, publication and peer review, salary and tenure (or seniority) ladders, as well as royalty-

sharing and conflict-of-interest policies.  Given a choice of sectors for which she could work, a 

researcher, will self select into an organization with the system of incentives and constraints that 

she expects will allows her to pursue the kind of research that will maximize her individual 

utility, taking into account her own skill set and her preferences over the different kinds of 

incentives offered. Once employed, a researcher makes specific choices of research projects, 

given that system of incentives and constraints. At the same time, taking into account the fact that 

faculty or research staff are all the time pursuing their own individual preferences—over a 

combination of fame, fortune, and freedom—the management of the organization constructs an 

organizational environment consisting of incentives attractive enough and constraints reasonable 

enough to engage talented researchers and induce them to be as innovative as possible in those 
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kinds of research outputs that will maximize the benefits to the organization, its shareholders, or 

it constituents.  

2.3. Combining theories of organizational comparative advantage with theories of 

technological trajectories 

 The ultimate result is that different types of R&D organizations become endowed with 

different kinds of research talent and differently optimized strategies for maximizing their payoff. 

Combined with the heterogeneity of research opportunities, defined by where a given research 

project arises at a given point in time within the evolving structure of knowledge and technology, 

it follows that differently endowed sectors will specialize according to their comparative 

advantage in different types of research.  

 R&D is assumed to proceed within distinct research paradigms such that the resulting 

technologies are generated along naturally occurring trajectories, k = 1…K, each of which can be 

assumed to be captured as a major branch on an estimated phylogenetic tree. Not all technological 

trajectories are presently at the same point of maturity in their growth or evolution: some 

constitute new (and thus currently poorly defined) areas of research with little accumulated prior 

knowledge; others are mature areas with large stocks of existing knowledge already in place.  

 There are J R&D sectors, j = 1…J, in the economy, distinct from one another in terms of the 

financing structures, prevailing cultures of open science versus proprietary technological R&D, 

and corresponding systems of incentives and constraints: 

 

  1 for universities, governments, and non-profit research laboratories, 

 j  = 2 for individuals, entrepreneurs, startup firms, and small businesses, and 

  3 for corporations. 
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The underlying behavioral model of any researcher, in any sector, j, for generating research 

results and ultimately patents consists of several distinct steps.   

1. A joint decision is made by a researcher and the research administrator or funding source 

in sector j to undertake a project in a specific research sub-field corresponding to an 

existing or emerging technological trajectory, k. It is presumed, although not observed, 

that the expected (joint) returns from this research project exceed the expected returns 

from the next best deployment of the researcher’s time and talents and the R&D 

organization’s resources.   

2. With a certain probability, a successful research result is produced that meets the standard 

criteria for patentability of being a novel, non-obvious, and useful. 

3. Another joint decision is made by the researcher and their host organization as to whether 

the (novel, non-obvious, and useful) research result be patented, versus alternative 

strategies of being kept as a trade secret, being published in the public domain, etc. It is 

presumed, although again not observable, that the expected (joint) returns to taking a 

patent on this invention, subject to policy restrictions and transaction cost constraints, are 

greater than the expected returns to taking a patent on the next best invention. Thus, with 

a certain probability, or patenting propensity, a patent is applied for and granted on the 

research result. 

4. The patent, n, the R&D sector, j, of the assignee, the technological trajectory, k, to which 

it contributes, and the qualitative attributes, Xn, of the patent are all observed. Some of 

the X can be observed immediately after the patent issues, others only after some time 

has elapsed. 

 Thus, when considering the universe of new research opportunities, the researcher’s choice 

set may include whether to explore uncharted territory or to pursue work within an already 

established technological trajectory, whether to attempt uncertain original experiments or to make 
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more certain incremental advancements, all the while factoring the probabilities of success and 

the expected payoffs in terms of fame, fortune, and freedom. It follows that each sector should 

therefore generate results of correspondingly different qualitative characteristics and perhaps 

concentrated at different particular phases of technological trajectories. 

2.4. Development of hypotheses 

 Dasgupta and David’s two sectors of open science and commercial technology effectively 

describe the two most broadly general alignments of incentives and constraints for R&D. 

However, to effectively summarize the major organizational arrangements most active in 

biotechnology and to reflect important differences between new entrants and incumbents, 

commercial technology is further divided into two sectors: entrepreneurs, new entrants, or 

startup R&D and corporate or incumbent R&D. Particularly apropos to biotechnology, these may 

be thought to reflect the primary mechanisms for financing R&D expenditures. The former 

raising funds from venture sources versus the later rising capital from public financial markets.  

 The result is three R&D sectors. First, the public sector consists mostly of universities and 

some government laboratories, funded largely by public funding sources and characterized 

organizationally by the incentives, constraints, and culture of open science. Second, the 

entrepreneurial sector consists of individual inventors and small often privately held biotech 

firms, funded largely by private venture capital, and characterized organizationally by the 

incentives, constraints, and culture of commercial technology development. Third, the corporate 

sector consists of the R&D laboratories of larger publicly traded firms, funded through corporate 

R&D expenditures, and likewise characterized organizationally by the incentives, constraints, and 

culture of commercial technology development. A division of innovative labor among these three 

can be hypothesized in terms of the expected characteristics of their respective contributions to a 

given technology’s evolution. 
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 In the public sector, operating in the mode of open science, the most important criteria by 

which success is judged and rewarded are (1) the significance of the problem addressed, (2) the 

originality and creativity of the solution posed, and (3) being the first to make the contribution. 

This triad of criteria—significance, creativity, and priority—drive university researchers to 

differentiate and diversify their projects, their careers, and themselves, ultimately creating a broad 

portfolio of research results that span the conventional continuum from the most purely basic of 

scientific discoveries to readily applied product and process inventions. Inevitably, however, a 

system that emphasizes creativity and originality tends to produce more discoveries that are less 

likely to be of immediate commercial use.  In commercial R&D, by contrast, the output must 

contribute within a fairly tight time horizon to a firm’s ability to create value and perpetuate itself 

by either increasing market share and revenues or reducing costs. Commercial R&D is therefore 

more directed and sequential, often charted out in routine phases leading up to the introductions 

of new production processes or the launches of new products, where success is ultimately judged 

by the market.  

 Age: Priority in discovery is important for researchers working under all three regimes. It is 

hypothesized that earlier inventions within a given technological trajectory are more likely to 

arise from researchers in universities and government labs. These researchers have greater 

incentives to do initial work in exploratory and unestablished areas, given the driving criteria they 

face for creativity and self-differentiation. Then, the middle phases of a trajectory are more likely 

to arise from entrepreneurial firms, as the common business model in biotechnology involves 

startups backed by venture capital to explore technically proven but still uncertain commercial 

opportunities. Finally, corporations are hypothesized to be more likely to innovate in the later 

phases of more established trajectories, refining and scaling up technologies for market. Thus, 

considering age alone, this hypothesis describes the classic linear model of R&D. (See this and 

following hypotheses summarized in Table 1.) 
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 Value: The distribution of values of inventions is highly skew (Scherer, Harhoff, and Kukies 

2000). The few high value successes tend to be paradigm-setting patents that dominate in large 

areas of follow-on innovation and product development. Such patents are often the unexpected 

results of exploratory research or research directed toward other questions. Since the breadth of 

sampling in open science is greater and because such researchers may be more on the lookout for 

new ideas and applications, it is expected that the probability of occurrence of top value 

inventions would be higher in universities. Yet, the stakes and uncertainties of investing in such 

research and the desire to capture the value of such top value inventions is so great that the 

entrepreneurial sector may in fact be more likely to actually pursue and patent such inventions. 

This might be called a ‘value filter’ hypothesis: venture capitalists and biotech startups will bet 

their investments only on the cream of the crop, and the entrepreneurial biotechnology sector may 

show the most valuable patents, followed by the open science sector. The incentives and 

dynamics of the corporate R&D sector seem less likely to consistently generate top value 

inventions. 

 Generality: Technologies characterized by greater generality are those that enable and drive 

follow-on innovation among a wider diversity of subsequent technological trajectories, affecting 

a wider diversity of markets. Proposing a measure of the diversity of technology fields from 

which a patent is cited, Trajtenberg, Henderson, and Jaffe (1992) find randomly selected 

university patents to be somewhat more general than corporate patents. The potential value of a 

more general invention is likely greater, but the transaction costs of licensing to other firms or 

fixed costs of vertically integrating into multiple markets makes that value more difficult to 

appropriate. Given the diversity of research programs found in open science organizations, their 

interest in broad social impact of results, and their lower regard for the appropriation of returns, it 

is hypothesized that organizations in the open science sector should be more likely to generate 

such measurably general inventions. In addition, many among the current generation of startups 
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in biotechnology are created around expertise in general technology platforms, such as micro-

array or genetic sequencing technologies, and they essentially sell the services of that platform. In 

contrast, corporations, which are more focused on final markets, are hypothesized to be least 

likely to innovate in general technologies. 

 Originality: The breadth of prior knowledge on which an invention draws is proposed by 

Trajtenberg, Henderson, and Jaffe to define its originality. Based upon the assumption that new 

ideas are influenced by existing knowledge, drawing on a broad base versus a narrow base 

indicates more original or synthetic thinking1. Since originality or breadth of thinking is a key 

criterion of success in open science it is hypothesized that original inventions are more likely to 

be observed coming from universities and other public sector sources. Since breadth of 

inspiration is not as important a criterion in the incentives of corporate R&D, original patents are 

least likely to come from that source. Startups are presumed to be somewhere in between.  

 Pace of Innovation: The pace of innovation, measured as the average lag between the grant 

date of the observed patent and the grant date of the patents it cites, will presumably be slower 

earlier in a technological trajectory, as larger conceptual and technological feasibility issues are 

being worked out. The pace likely quickens as innovation in that trajectory becomes more routine 

and as competition intensifies to get products to market. University and government researchers 

are less likely to be working in an area with short lag times, while startups or corporations will 

have an advantage in fast paced innovation, although, between these two it is not clear which 

would have the upper hand in terms of pace. 

 Appropriability: The appropriability of a technology is the proportion of its value that can be 

captured as private rents. A common bibliometric proxy for appropriability is ‘self citation,’ 

defined as the proportion of citations that were made to patents invented by the same organization 

                                                 

1 Arguably, an invention that draws on no prior knowledge at all is original. The definition based on 
breadth of influence conforms to the measure that is available to test this hypothesis. See Table 2.  
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as the citing patent, reflecting the degree to which a patent builds upon the existing technologies 

already owned by the same organization. This measure of appropriability reflects a technology’s 

dependence upon the internalized transfer of knowledge: a more highly appropriable technology 

does not transmit as readily through external spillovers. Conversely, the greater the degree of 

external spillovers from a technology, the smaller the proportion of its value that is left to be 

appropriated by the inventing organization. The building of protective ‘patent fences’ by filing 

extensively around a valuable patent position is a commonly discussed strategy in intellectual 

asset management. It is thus hypothesized that both types of private sector R&D organization will 

strongly emphasize innovation with high appropriability, while researchers in open science will 

be much less concerned with appropriation or building upon their organization’s own prior 

patents.  

 

Table 1. Summary of hypotheses 

Characteristic of invention: Sector of inventor: 
  

University/Public 
 

 
Entrepreneurial 

 
Corporate 

Age or priority of the invention +++ ++ + 

Scope of the invention ++ ++ + 

Value of the invention ++ +++ + 

Generality of application +++ ++ + 

Originality of idea +++ ++ + 

Pace of innovation + ++ ++ 

Appropriability + +++ +++ 

+++  is most likely,  ++  less likely, and  +  least likely sector to specialize in each characteristic. 
 

3. The data 

 The data for this study seek to encompass all inventions made in the life sciences over the last 

30 years with relevance to crop agriculture, combined from two previously published collections 

of U.S. utility patents. The first set, assembled in 1999 from MicroPatent data, is 2477 U.S. 
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patents granted from 1973 to 1998 (De Janvry, Graff, Sadoulet, and Zilberman 1999; Graff, 

Rausser, and Small 2003). The second data set, assembled in late 2001, consists of 4303 U.S. 

patents granted between 1982 and 2001 (Graff, Cullen, Bradford, Zilberman, and Bennett 2003). 

The intersect of the two sets is 1678 patents, yielding a combined collection for this study of 5102 

U.S. patents granted between 1973 and 2001. The patents in both of the collections were selected 

using complex iterative data base searches over patent classification numbers, technology terms, 

and patent citation links, and both were thoroughly screened by experts in biotechnology, in an 

effort to include all patents with subject matter pertinent to the industry but to exclude any patents 

with non-pertinent subject matter. 

 

Table 2. Independent variable definitions and sources 

Variable Definition Indicates 
Age Calculated from the application date of the 

patent 
Priority of the invention. 

Number of citations 
made 

Count of how many prior patents the 
observed patent cites as relevant prior art in 
its References Cited section. 

Quality of the invention (Lanjouw and 
Schankerman, 1999), or scope of the 
invention (various authors). 

Originality index Ranges between 0 if the prior art patents 
cited by the observed patent are 
concentrated in a single technology class 
and 1 if the cited patents are spread out. 

Originality of the invention: the breadth 
of knowledge drawn upon by the 
invention (Trajtenberg et al, 1992, 1997; 
Hall et al, 2001) 

Average backward 
citation lag 

The average age of the prior art patents 
cited by the observed patent, at the time it 
was granted. 

The pace or rate of innovation in the 
area of the invention (Trajtenberg et al, 
1992, 1997; Hall et al, 2001) 

(within sample) Self-
citation ratio  

The percentage of cited prior art patents 
that are assigned to the same assignee 
(aggregated under parent organization) as 
the observed patent. 

Appropriability of the invention: 
transmission of the knowledge is easier 
internally than via external spillovers 
(Trajtenberg et al, 1992; Hall et al, 2001) 

Number of citations 
received 

Count of how many subsequently granted 
patents had cited the observed patent as 
relevant prior art, by the end of 2002. 

Value, importance (Trajtenberg, 1990; 
Hall et al, 2000; Hall et al, 2001), or 
quality (Lanjouw and Schankerman, 
1999) of the invention. 

Generality index Ranges between 0 if the subsequent patents 
citing the observed patent are concentrated 
in a single technology class and 1 if they 
are spread out across separate classes. 

Generality of the invention: the breadth 
of technological impact resulting from 
the invention (Trajtenberg et al, 1992, 
1997; Hall et al, 2001) 
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3.1. Patent quality indicators: independent variables 

 Not all inventions are created equal. Bibliometric indicators introduced in Trajtenberg (1990) 

and in Trajtenberg, Henderson, and Jaffe (1992) and several other studies have been linked to 

important aspects of economic heterogeneity in the technologies underlying patents (Hall, 

Trajtenberg, and Jaffe 2000; Harhoff, Narin, Scherer, and Vopel 1999; Lanjouw and 

Schankerman 1999). The characteristics driving the hypotheses developed in the preceding 

section and listed in Table 1 have all been developed in this literature. Table 2 lists the set of 

indicators employed in this study, defines each briefly, and describes the economic qualities of 

the invention measured. Most are adapted directly from the NBER Patent Citations Data File, and 

detailed definitions are available in the reference paper that accompanies the data file (Hall, Jaffe, 

and Trajtenberg 2001). Summary statistics are provided in Table 3.  

 

Table 3. Summary statistics 

Variable type Obs. Mean Std. Dev. Min. Max. 

Age years 5102 6.22 4.35 1.32 27.98 

Number of citations made count 5102 3.25 6.33 0 125 

Originality index  (0,1) 5102 0.15 0.25 0 1 

Average backward citation lag years 3511 7.47 5.62 0 102 

(within sample) Self-citation ratio  ratio (0,1) 5102 0.17 0.35 0 1 

Number of citations received count 5102 3.97 10.89 0 180 

Generality index  (0,1) 5102 0.14 0.24 0 1 

 

3.2. Determination of inventing sector: dependent variables 

 The question of what sector generated each new invention was determined for each patent in 

the collection by examining the organization to which it was assigned when issued by the patent 
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office. The names of such ‘assignees-at-issue’2 are recorded in the patent data. However, several 

issues complicate the usefulness of the names thus obtained. First, something as simple as the 

consistent identification of an individual organization is complicated in a data set of 5,103 

documents by the fact that an assignee may be listed under different names or under different 

spellings (and misspellings) of those names on different patents. Second, different business units 

or subsidiaries of a single larger organization may each receive patents in the name of the 

business unit or subsidiary rather than in the name of the larger organization. And, third, a small 

fraction, about 6 percent, of the patents have more than one assignee, and some of those involve 

collaboration across different sectors. 

 The approach taken to solve the first complication was to clean the names of the assignees, 

uniformly giving all patents for each assignee the single most-common spelling. In response to 

the second challenge, all documents assigned to a smaller entity known to have been majority 

owned by a larger entity at the time the patent was filed were reassigned in the data set to the 

parent entity. In response to the third complication, co-assigned patents were simply attributed to 

the first assignee listed on the patent, since priority listing often indicates the lead institution in a 

collaborative relationship. 

 Each assignee was then identified as a university, government agency, non-profit 

organization, individual, small entrepreneurial firm, or large corporate firm. The most difficult 

differentiation was between the last two, both because some medium sized firms defy easy 

classification as either ‘entrepreneurial’ or ‘corporate’, and because several of the most active 

small biotech firms in the industry were acquired by the large corporations in the industry during 

the timeframe considered. Since the fundamental research question seeks to relate organizational 

                                                 

2 Inventors are the original owners of intellectual property rights, but they usually assign the rights to their employer. 
In the case that a patent’s inventor is independent there may not be any assignee, and the patent simply remains the 
property of the independent inventor. However, only 1.7 percent of the documents in this data set went to 
independent inventors. (See Table 4.) 



21 

comparative advantages to innovative outcomes, the rules of thumb used to determine between 

these two categories considered issues of size, age, the nature of ownership and financing 

(privately held versus publicly listed), and the publicly projected culture of the firm. In the cases 

of acquired firms, patents assigned in the name of a small firm were tabulated as ‘entrepreneurial’ 

if filed before the date that the firm was acquired by its corporate parent. Applications made after 

that date were then considered ‘corporate’.  

 

Table 4. Three R&D sectors generating inventions in the agricultural life sciences 

Type of R&D Organization Patent Count Percent of Total 

University / Public Sector   

   Universities 957 18.8% 

   Government laboratories, agencies 291 5.7% 

   Non-profit research centers, foundations 37 0.7% 

Total Public Sector 1,285 25.2% 

Entrepreneurial Sector   

   Individual inventors 89 1.7% 

   Entrepreneurial firms: biotech startups, small private firms 916 18.0% 

Total Entrepreneurial Sector 1,005 19.7% 

Corporate Sector    

   Corporate firms: large, diversified, publicly listed 2,812 55.1% 

Total Corporate Sector 2,812 55.1% 

Grand Total: 5,102 100.0% 

 

 

3.3.  Determination of technological trajectories by phylogenetic analysis 

 A technological trajectory may be considered, in its essence, as an evolutionary lineage of 

conceptual constructs. This paper approaches the problem of empirically identifying the main 

technological trajectories in an industry-defined collection of patents by borrowing from the 

methodologies of phylogenetic systematics (Hennig, 1966; Swofford, Olsen, Waddell, and Hillis 
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1996) to infer the evolutionary relationships among individual observations, based upon 

similarities and differences in shared characteristics and under explicit assumptions about the 

inheritance and evolutionary change of those characteristics. The result of a phylogenetic analysis 

is a network or tree describing a hypothesis of the historical order and pattern by which the 

‘observed taxanomic units’ arose from common ancestors. Generally two taxa are placed more 

closely together in a phylogeny if they have more similar heritable anatomical, physiological, or 

genetic characteristics. Analogously two patents, treated as observed taxa, may be inferred to be 

evolutionarily related (in an economic sense) given similarity in conceptual or technological 

characteristics3—indicating perhaps that one built sequentially upon ideas contained in the other 

or that both arose simultaneously in response to similar demand conditions, technological 

opportunities and spillovers. In short, they may be placed within a common technological 

trajectory. Phylogenetic analogies have already been applied to the conceptual development of 

science (Hull 1988; Mishler 1990), and similar clustering and mapping approaches, albeit lacking 

explicit evolutionary assumptions, have been applied to scientific documents, including patents 

(Callon, Law, and Rip 1986; Noyons, Moed, and Luwel 1999). 

 The conceptual and technological characteristics of the patents on which this preliminary 

phylogenetic analysis was based included (1) whether a patent fit any of 136 possible categories 

of technological application determined and coded by an expert in the field4, (2) whether a patent 

was given any of 162 relevant International Patent Classifications (IPCs) indices, and (3) whether 

a patent cited any of 667 commonly-cited older patents in the collection (akin to the bibliometric 

method of tracking ‘co-citations’: Small and Griffith 1974; Small 1973; Zitt and Bassecoulard 

                                                 

3 An analogy between a ‘species’ and a ‘patented technology’ holds, as both are defined by a discrete and 
novel step setting them apart from their closest neighbors.  

4 This expert analysis was carried out on just the earlier, 1973-1998 data set. Data for technological application 
characteristics were coded as “missing” for patents unique to the later 1982-2001 data set. 
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1996). In each case a character was coded as ‘present’ (=1), ‘absent’ (=0) or ‘missing’ (=?), 

resulting in a character matrix of 5102 patent ‘taxa’ described by 875 characters.  

 Model choice for such a large data set is limited. Global optimization methods, based on 

maximum parsimony and maximum likelihood optimality criteria, are feasible only for small data 

sets given their computational intensity. Heuristic searches for local parsimony or likelihood 

optima are feasible on larger data sets. However, based on congruence of initial results with 

previous clustering analysis of this patent collection (see Graff 2003), an additive tree building 

algorithm called the ‘neighbor-joining method’ (Saitou and Nei 1987) was chosen for this 

preliminary exploration into applications of phylogenetic methods.  

 The neighbor-joining algorithm begins by calculating an (N x N) matrix of pairwise 

distances5 among the N taxa from the character matrix. It then normalizes the distance matrix and 

constructs the first branch of the hypothesized evolutionary tree by joining the closest pair of taxa 

in the normalized distance matrix. It then removes the joined pair of neighbors from the sample, 

recalculates a new (N-1 x N-1) distance matrix, normalizes it, and constructs the next branch of 

the tree by joining the closest pair of neighbors in the new normalized distance matrix. Each 

subsequent cycle generates an additional internal node supporting another branch, resulting in a 

final tree constructed out of shortest normalized branch lengths.  

 The phylogenetic tree estimated for this patent dataset is displayed in Figure 1. The patents 

are listed across the bottom of the figure. (Because of reduction in size they are not legible in this 

reproduction of the tree.) The tree emanates from a putatively most ancestral patent, which roots 

the tree on the right hand side. The vertical lengths of branches indicate the computed distance 

between the characteristics of the patents in one branch and the characteristics of the patents in 

the closest neighboring branches.  
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Figure 1. Hypothesized evolution of patented inventions in the agricultural life sciences, 
calculated from descriptive characteristics of 5103 U.S. patents using a neighbor-joining 
phylogenetic algorithm in PAUP* 4.O (Swofford 2002).  
 

 

                

          

 

 

 The primary branches and sub-branches represent significant lines of technological 

development in crop genetics and serve our purpose of identifying separate technological 

trajectories. The most ‘ancestral’ branch—designated ‘A’ in the phylogram—consists, not 

surprisingly, of crop variety germplasm breeding lines. A large leap is then made to the rest of the 

tree, which consists of a variety of genetic traits and process technologies. For example, the 

                                                                                                                                                 

5 Pairwise distance may be defined alternately as least squares, weighted least squares, or “minimum evolution”. 

H G F E D C B A
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trajectory of genetically engineered herbicide resistance technologies is contained in sub-branch 

‘D1’. However, insect control technologies based on Bt (Bacillus thuringiensis) genes and 

proteins are scattered across four branches: two that represent the development of spray-on Bt 

biopesticides (C2 and E1) and two that represent the development of transgenic Bt crops (F3 and 

H2). Interestingly, branch E2, occurring relatively late in the evolutionary hierarchy, is the branch 

that contains most of the genetic transformation process technologies. This is a logical result of 

the algorithm since it does not take any time variable into account: these molecular biology 

patents contain little reference to specific crop varieties, making them distantly removed from the 

ancestral ‘outgroup’ to which the breeding lines we closely related. This illustrates some of the 

limitations of the neighbor-joining algorithm, and further work to refine this empirical 

evolutionary model of technological development will help to reduce this and other such 

inconsistencies. 

4. The econometric model 

 Econometric models of discrete random outcomes, such as multinomial probit and logit 

analysis, have been adapted and employed by economists to estimate latent variable models of 

choice behavior (McFadden 1974; Ruud 2000) in which each outcome is interpreted as the choice 

of an individual economic agent whose unobserved or ‘latent’ utility, construed as a random 

variable, is assumed to have been maximized by the observed choice, also a random variable, 

made relative to all other available options. McCullagh and Nelder (1983) argue that the 

statistical model employed to analyze joint sample distributions of polytomous data and the 

underlying behavioral model used to describe the unobserved latent variable are, however, indeed 

separate models, and in most cases the latent variable, while useful for the internal consistency of 

the behavioral hypothesis, is often unverifiable in practice. Given the data limitations and the 

behavioral complexity of the innovation phenomena addressed in this study, it is not possible to 

identify a single, behaviorally meaningful latent variable. Instead we simplify the complex 
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decisions effected by the many unobservable parameters and latent behavioral variables at play in 

the data generating process into a single ‘black box’ probability index that relates the qualitative 

characteristics of a patent with the probability that it is observed to arise from research conducted 

in a particular sector of the economy.  

 In essence, this exercise is the same as the classical statistical problem of drawing a randomly 

distributed sample, pulling n colored chips from j barrels. For each observed patent, n, in each 

technological trajectory, k, the probability index that the technology is found to be invented and 

patent by the jth organizational type is denoted by 

  y*nj  =  XnBj  +  εnj, 

where Xn is a vector of attributes of the nth patent and the B are unknown coefficients. The εnj are 

the unobserved differences in the probability of that patent arising in the jth  type of R&D 

organization, resulting from unobserved features of the behavioral model including the 

institutional features of the organization, and are assumed to be i.i.d. random variables with a 

Weibull probability distribution. 

 When the jth organizational type actually undertakes the research and receives the nth patent, 

the observed outcome is described with the J dummy variables where 

ynj =  1 if the nth patent is issued to the jth organizational type  

 0 otherwise.  

From the probability index equation the probability of the nth patent coming from the jth 

organizational type is 

   Pnj  =  Pr[ynj = 1 | Xn] 

    =  Pr[y*ni ≤ y*nj, ∀i ≠ j | Xn] 

    =  Pr[εni  −  εnj  ≤   (Xnj −  Xni)`B, ∀i ≠ j | Xn] 

Which is equivalent, given the assumptions made about the distribution of the εs, to 
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where the values of the J different ‘P’s are conditional probabilities of a patent’s occurrence in 

the J different sectors given the independent variables describing the patent’s attributes. 

 Because they do not enter the probabilities linearly, the coefficients on these patent attributes, 

the magnitude of the Bs, cannot be interpreted directly. However, an interpretation is possible 

from the definition 

  jon
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or more conveniently for interpretation 
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which is the probability ratio (also known as the relative risk ratio) of a given type of patent 

arising from a research organization of type j relative to a research organization of type o. The q 

parameters in the vector B are the marginal effects of the qth regressor in Xn on the probability 

ratio. Finally, since the multinomial logit system is solved by maximum likelihood, testing 

hypotheses about coefficients follows standard methods based on the covariance matrix from the 

maximum likelihood estimation. 
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5. Results and Analysis 

5.1.  Evidence of R&D specialization in agricultural biotechnology 

 Multinomial regressions on the entire data set explore the general significance of the patent 

indicators as predictors of R&D sector of invention and test the hypotheses of technological 

evolution at the industry level (Table 5.) This, in essence, treats all patented innovation in 

agricultural biotechnology and crop science according to our framework as a single technological 

trajectory.  

 By the construction of the multinomial logit, one of the possible values of the explained 

variable is treated as the baseline comparison group. We designated the corporate sector, which 

consists of 55 percent of the patents, as the comparison group. Seperate equations are then 

estimated together to compare the likelihood of observing each of the other possible values of the 

explained variable (in this case ‘university/public sector’ and ‘entrepreneurial sector’) relative to 

observing the comparison group, given the values of the explanatory variables. Thus, the sign of a 

coefficient obtained in the university/public sector equation indicates whether patents strong in 

the corresponding independent variable are more or less likely to be from the university or public 

sector, relative to the corporate sector, controlling for all of the other explanatory patent quality 

variables. Similarly, the sign of a coefficient obtained in the entrepreneurial sector equation only 

explains the relative likelihood of a patent having come from a new entrant relative to an 

established corporate firm. The likelihood of university versus entrepreneurial invention of 

patents with a particular quality can be imputed by comparing the coefficients of the 

corresponding variable in both equations, since they are both computed relative to the corporate 

sector comparison group. 

 The four different equation specifications alternately include and exclude a variable on 

citation lag and controls for technological trajectories respectively. The variable of average 

backward citation lags is missing for all patents that do not cite prior art, thus decreasing the 
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number of observations entered and weakening the estimations. Dummies for the technology 

trajectories are adapted from the structure of sub-branches estimated in the phylogenetic analysis 

in Section 3.3. The explanatory power of these full industry regressions is limited, given the 

cross-sectoral and dynamic complexity summarized in each. Even so, several significant results 

are obtained. 

 Coefficients on ‘citations made’ are negative and significant in all four specifications of the 

university equation. Thus, the less a patent cites prior art, the more likely it is to be from a 

university than from a corporation, rejecting our hypothesis of broader patent scope from 

universities. In addition, citations are only slightly more likely from biotech entrepreneurs than 

from corporations, also challenging our hypothesis. However, significant positive coefficients on 

‘originality’ in all specifications of the university equation indicate the more broadly a patent 

cites, the more likely it is to be from a university than a corporation. Biotech entrepreneurs are 

also, although to a lesser degree, a more likely source of original patents than are corporations. 

These two results together support our hypotheses of greatest originality from universities, 

followed by entrepreneurs, and then corporations.  

 Coefficients on the self-citation ratio in the university equations are significantly negative. 

Inventions that cite—and thus presumably build upon and further develop—patents from the 

same organization, are not as likely to be found amongst universities or government labs. 

Considering the size and significance of corporate portfolios this result may be considered 

somewhat surprising: it is much easier to cite and build on one of your own patents when there 

are so many more of them on average. The insignificance of the result thus concurs with our 

hypothesis: appropriability will not, all else being equal, differentiate patents from the 

entrepreneurial and corporate sectors.  

 We have attempted to separate the hypothesis of appropriability from the hypothesis of value 

creation. The significant positive coefficient on ‘citations received’ in the entrepreneurial sector 
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equation supports what we call the value filter hypothesis. And, accordingly, the number of 

citations received is not a significant predictor of university patents relative to corporate patents.  

 Not only do more highly cited patents come more often from the entrepreneurial sector, but 

more widely cited or ‘general’ patents are also found to be much more likely from the 

entrepreneurial sector than the corporate sector. Greater generality is also a significant qualitative 

indicator of university patents relative to corporate patents, although the effect is erased when 

technology controls are included in the equation. Contrary to our stated hypothesis, the difference 

in generality between entrepreneurial and corporate appears to be greater than it does between 

university and corporate: we had expected greater generality in the university equation. 

  Results on the timing of innovation are less clear in the full industry equations. A greater 

average backward citation lag appears to be more likely among patents in the entrepreneurial 

sector than the corporate sector. In other words the pace of innovation is slower in entrepreneurial 

patents than in corporate patents. The more interesting result is that a greater backward citation 

lag makes it less likely that the patent is from a university, implying that the pace of innovation is 

faster in university patents than in corporate patents. This may be an artifact of the fact that 

university patents tend to cite less on average: they also tend to cite more recent work on average.  

 Finally, we do not expect when considering the full industry to explain the sector of invention 

from the age of a patent. Interestingly, however, the age coefficient is significant in the first 

entrepreneurial sector equation, an artifact perhaps of the fact that most of the prolific biotech 

startups were acquired by the mid to late 1990s (see Graff, Rausser, & Small, 2003) and recent 

patenting in the industry has seen much less input from such firms. 
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Table 5. Patent qualities related to sector of invention: Full industry mulinomial logit regression results 
 
Sector 3- Corporate sector is the comparison group Regression coefficients displayed; Standard errors in parenthesis 

 (1)  (2)  (3)  (4) 
 university entrep.  university entrep.  university entrep.  university entrep. 
            
Age 0.012 0.031  0.016 0.017  0.011 0.015  0.018 0.000 
 (0.010) (0.010)**  (0.012) (0.012)  (0.011) (0.011)  (0.013) (0.013) 
Citations made -0.054 -0.012  -0.050 -0.016  -0.049 -0.007  -0.044 -0.008 
 (0.010)** (0.007)  (0.010)** (0.007)*  (0.011)** (0.007)  (0.011)** (0.008) 
no citations made 0.017 0.065  0.239 -0.201  0.196 0.133  0.135 -0.385 
 (0.088) (0.101)  (1.105) (1.110)  (0.093)* (0.105)  (1.121) (1.128) 
Originality index 1.166 0.974  1.171 1.000  0.771 0.470  0.782 0.490 
 (0.180)** (0.183)**  (0.181)** (0.185)**  (0.185)** (0.192)*  (0.187)** (0.196)* 
Self citation ratio -1.200 0.018  -1.235 0.093  -0.977 0.126  -0.992 0.213 
 (0.131)** (0.112)  (0.134)** (0.115)  (0.137)** (0.120)  (0.141)** (0.126) 
Citations received -0.003 0.006  -0.004 0.009  0.001 0.010  0.000 0.013 
 (0.004) (0.003)  (0.005) (0.004)*  (0.004) (0.003)**  (0.005) (0.004)** 
no citations received -0.108 -0.332  -0.093 -0.428  -0.017 -0.289  -0.096 -0.430 
 (0.087) (0.099)**  (0.108) (0.119)**  (0.090) (0.102)**  (0.112) (0.123)** 
Generality index 0.653 1.226  0.587 1.096  0.250 0.818  0.262 0.660 
 (0.184)** (0.184)**  (0.217)** (0.212)**  (0.192) (0.193)**  (0.226) (0.224)** 
Backward citation lag    -0.016 0.020     -0.008 0.026 
    (0.009)* (0.007)**     (0.009) (0.008)** 
Sub-branch technology      
dummy variables 

      sub-branch 
tech coeff’s 

sub-
branch 

tech 
coeff’s 

 sub-branch 
tech coeff’s 

sub-
branch 

tech 
coeff’s 

Constant -0.743 -1.456  -0.659 -1.497       
 (0.110)** (0.120)**  (0.135)** (0.141)**       
Observations 5102  3511  5102  3511 
Pseudo R2 0.04  0.05  0.18  0.18 

   * is significant at 5%, ** is significant at 1%
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Table 6. Germplasm patent qualities related to sector of invention: Trajectory specific mulinomial logit regression results 
 
Sector 3- Corporate sector is the comparison group Regression coefficients displayed; Standard errors in parenthesis 
 A1  A2  B  G  H1 
 soy varieties  maize parental lines/ 

hybrid maize 
 disease resistant 

hybrid maize 
 modified  

amino acid/ 
protein content  
maize varieties 

 modified  
fatty acid/  
oil content  

soy varieties 

 university entrep.  university entrep.  university entrep.  university entrep.  university entrep. 
               
Age -0.004 0.173  -0.667 -0.333  0.021 0.066  0.238 0.358  0.025 0.084 
 (0.198) (0.081)*  (0.254)** (0.183)  (0.066) (0.049)  (0.106)* (0.115)**  (0.090) (0.092) 
Citations made 0.411 0.341  -0.038 -0.001  0.050 0.211  -0.260 0.025  -0.451 0.059 
 (0.262) (0.233)  (0.058) (0.161)  (0.066) (0.090)*  (0.233) (0 .076)  (0.192)** (0.098) 
no citations made -1.366 -1.033  -0.885 -0.865  0.218 0.776  -0.113 -0.390  0.722 0.353 
 (1.320) (0.955)  (0.647) (0.641)  (0.716) (0.622)  (0.697) (0.862)  (0.673) (0.802) 
Originality index 1.307   2.162 -0.459  3.475 -3.629  0.235 1.546  4.730 0.354 
 (4.124)   (1.702) (2.502)  (1.630)* (2.054)  (1.781) (1.578)  (1.316)** (1.716) 
Self citation ratio -3.193 -2.081  -1.251 -1.961  -5.968 -0.017  0.460 0.097  -0.239 -1.398 
 (1.601)* (1.029)*  (0.994) (1.129)  (3.532)* (0.945)  (0.927) (1.059)  (0.606) ( 1.007) 
Citations received -18.741 -0.333  -0.081 -21.927  -0.124 -0.011  -0.387 0.072  0.006 0.011 
 (1.864)** (0.251)  (0.211) (1.428)**  (0.129) (0.011)  (0.224)* (0.097)  (0.017) (0.014) 
no citations received -18.723 -0.200  -0.909 -22.923  -1.089 -1.170  -0.339 1.612  0.367 0.219 
 (1.587)** (0.735)  (0.651) (1.702)**  (0.705) (0.628)  (0.657) (0.942)  (0.561) (0.674) 
Generality index  -0.944  2.928   -1.672 0.043  3.165 2.012  1.691 0.879 
  (3.349)  (2.444)   (1.519) (1.127)  (1.782)* (1.649)  (1.130) (1.455) 
Constant 17.389 -1.101  1.370 22.365  -1.148 -1.807  -1.673 -5.252  -1.643 -2.803 
 (0.000)** (1.296)  (1.265) (1.973)**  (0.801) (0.739)*  (0.979)* (1.267)**  (0.776)* (0.755)** 
               
Observations 132  342  134  152  200 
Pseudo R2 0.2163  0.1458  0.1823  0.2365  0.1244 
   * is significant at 5%, ** is significant at 1% 
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Table 7: Enabling technology patent qualities related to sector of invention:  
Trajectory specific mulinomial logit regression results 
 
Sector 3- Corporate sector is the comparison group  
Regression coefficients displayed; Standard errors in parenthesis 
 E2  F1  F4 
 plant genetic 

transformation tools 
 cell/tissue culture and 

plant fertility 
 cell/tissue culture 

 university entrep.  university entrep.  university entrep. 
         
Age -0.003 0.069  -0.041 0.028  0.051 0.050 
 (0.045) (0.050)  (0.053) (0.041)  (0.055) (0.048) 
Citations made -0.016 -0.054  -0.072 0.101  -0.140 -0.263 
 (0.072) (0.112)  (0.110) (0.048)*  (0.058)** (0.080)*

* 
no citations made 0.202 -0.503  -0.094 0.352  0.644 -0.132 
 (0.379) (0.466)  (0.750) (0.649)  (0.547) (0.505) 
Originality index -0.324 -1.316  -0.476 -0.945  2.727 2.159 
 (1.016) (1.319)  (1.601) (1.201)  (1.127)** (0.995)* 
Self citation ratio -1.051 -0.616  -3.669 -2.213  -1.514 -0.627 
 (0.717) (0.745)  (2.158)* (1.201)  (1.093) (0.631) 
Citations received 0.012 0.015  0.023 -0.009  -0.076 -0.001 
 (0.014) (0.015)  (0.012)* (0.017)  (0.043)* (0.024) 
no citations received -0.166 -0.236  -1.039 -0.733  0.238 0.768 
 (0.388) (0.492)  (0.721) (0.622)  (0.605) (0.515) 
Generality index -0.577 -0.848  0.055 0.234  2.246 1.411 
 (0.760) (0.897)  (1.322) (1.085)  (1.093)* (1.013) 
Constant -0.379 -1.054  -0.248 -1.014  -1.707 -1.026 
 (0.492) (0.604)  (0.747) (0.653)  (0.698)** (0.606) 
         
Observations 235  138  216 
Pseudo R2 0.0305  0.1583  0.1695 
  * is significant at 5%, ** is significant at 1% 
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Table 8. Plant genetic trait patent qualities related to sector of invention: Trajectory specific mulinomial logit regression results 
 
Sector 3- Corporate sector is the comparison group Regression coefficients displayed; Standard errors in parenthesis 
 D1  C2  E1  F3  H2 
 engineered herbicide 

tolerance genes and 
traits 

 biopesticides and 
biocontrol (including 

Bt) 

 engineered insect 
resistance (including 

Bt) and product quality 
genes and traits 

 engineered Bt insect 
resistance genes and 

traits 

 engineered Bt insect 
resistance genes and 

traits 

 university entrep.  university entrep.  university entrep.  university entrep.  university entrep. 
               
Age 0.076 0.047  0.155 0.054  0.033 -0.091  0.134 0.044  0.020 0.007 
 (0.061) (0.082)  (0.051)** (0.052)  (0.033) (0.047)  (0.093) (0.075)  (0.043) (0.048) 
Citations made -0.061 -0.207  -0.051 -0.005  0.162 0.204   0.085 -0.037  -0.065 0.025 
 (0.027)* (0.083)*  (0.045) (0.037)  (0.059)** (0.059)**  (0.143) (0.095)  (0.088) (0.087) 
no citations made -0.322 -0.819  0.640 1.101  0.579 0.367  1.026 0.655  -0.031 0.377 
 (0.596) (0.809)  (0.569) (0.540)*  (0.471) (0.605)  (0.852) (0.095)  (0.439) (0.526) 
Originality index 0.392 -0.665  1.246 0.509  -1.151 -1.104  -1.032 1.478  0.341 1.580 
 (0.726) (1.139)  (0.754)* (0.745)  (0.909) (0.978)  (2.199) (1.296)  (0.938) (0.935) 
Self citation ratio -1.409 -0.410  0.951 2.104  -0.406 1.979  -0.158 0.976  -0.178 1.469 
 (0.624)* (0.687)  (0.588) (0.534)**  (0.652) (0.572)**  (1.369) (0.704)  (0.673) (0.573)** 
Citations received 0.006 0.028  -0.024 0.006  -0.035 -0.005  -1.130 -0.014  -0.010 0.015 
 (0.015) (0.016)  (0.027) (0.022)  (0.027) (0.018)  (0.744) (0.017)  (0.019) (0.017) 
no citations received -0.487 0.297  0.264 -0.091  0.643 -1.160  -2.695 -1.591  0.331 -0.276 
 (0.464) (0.701)  (0.508) (0.550)  (0.460) (0.572)*  (1.219)* (0.598)**  (0.462) (0.542) 
Generality index 0.633 -0.113  -1.838 -0.241  1.877 3.289  2.678 0.452  1.072 1.012 
 (0.827) (1.278)  (0.797)* (0.776)  (0.916)* (0.924)**  (2.614) (1.089)  (0.755) (0.795) 
Constant -0.999 -1.364  -0.735 -0.603  -1.387 -1.254  0.195 -0.059  -0.659 -1.551 
 (0.611) (0.867)  (0.611) (0.619)  (0.534)** (0.611)*  (1.421) (0.805)  (0.621) (0.696)* 
               
Observations 244  278  230  104  221 
Pseudo R2 0.1577  0.0910  0.1978  0.1783  0.0593 
   * is significant at 5%, ** is significant at 1% 
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5.2. Patterns of R&D specialization in the technological trajectories 

  A series of multinomial regressions on thirteen seperate technological trajectories identified 

from the phylogenetic tree are intended to test hypotheses of sectoral specialization within each 

technology’s own evolution. The thirteen are divided into germplasm (in Table 6), enabling 

technologies (in Table 7), and gene/trait technologies in (Table 8).  By reducing sample size and 

by controlling explicitly for technological homology (and thus reducing technological 

heterogeneity within these sub-samples), the explanatory power of the individual estimation 

procedures is improved: pseudo R-squares are in some cases several fold greater than in the 

industry wide regressions.  

 Additional complications are also introduced, deriving both from smaller sample sizes and 

inconsistencies carrying over from the phylogenetic estimation of technological trajectories. 

Specifically, issues arise in trying to capture trajectories of technologies that are so mature that 

they have only observed the later phases, dominated by the corporate sector, or technologies of 

such ubiquitous general-purpose nature that they are diffused across the various branches of the 

phylogenetic tree. Examples of mature technologies are soy and maize germplasm (A1 and A2), 

where involvement by university or entrepreneurial inventors is limited to just a few dozen 

patents compared to the corporate sector’s hundreds of patents. As a result, the ability of the 

multinomial procedure to compare between sectors becomes compromised. An example of a 

general purpose technology is plant genetic transformation tools (E2), where no significant 

differences result from the multinomial estimation, possibly because this branch of the tree was a 

catch all for nondescript incremental modifications to transformation techniques, while the most 

significant patents in this general purpose technology clustered within the branches of application 

that they enabled.  

 Some results obtained for the full industry in the previous section are recapitulated here at the 

level of individual technological trajectories. Greater originality is a significant indicator of 
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university inventions in several technologies, including disease resistant maize (B), improved oil 

soybeans (H1), cell and tissue cultures (F4), and Bt biopesticides (C2). Self citations ratio, 

proxying for appropriability, is significantly smaller for university inventions in several 

technologies, including soy varieties (A1), disease resistant maize (B), cell culture and plant 

fertility (F1), and herbicide tolerance genetic traits (D1). Greater generality is associated with 

university patents in several, including high protein maize (G), cell and tissue culture (F4), and 

engineered Bt traits (E1). University/public sector patents receive significantly fewer citations, 

indicating lower average value of inventions, in several technologies including soy varieties (A1), 

high protein maize (G), cell and tissue culture (F4), yet received significantly more in the cell 

tissue and plant fertility trajectory (F1). 

 Unique results are also found looking within the technological trajectories. The time-

dependent linear hypothesis is meaningfully tested in this context. In the university/public sector 

equation the coefficient point estimate on age is positive in nine out of thirteen trajectories, it is 

not significantly different from zero. However, in only two of these technologies does older age 

significantly identify university/public sector patenting. These are high protein maize (G) and Bt 

biopesticides (C2). Point estimates indicate patents from the entrepreneurial sector are at least as 

old as corporate patents in eleven technologies, although significantly so only in two as well, 

those being soy varieties (A2) and high protein maize (G). In three of the four Bt trajectories high 

self citation ratios are more likely in entrepreneurial biotech patents than corporate patents, 

interesting rejection of our hypothesis that corporate patents would be more likely to cite their 

own previous work. 

 

6. Conclusions 

 So, have the roles of public and private sector agricultural scientists become indistinguishable 

in the era of biotechnology? Indeed they have not. Systematic differences are found in the 
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attributes of the patents filed by university and public sector inventors, biotech entrepreneurs, and 

corporations. And those differences do indicate specialization in the qualitative nature of 

knowledge production under the different systems and policies of each sector. Four specific 

conclusions can be advanced based on the results. 

 The first conclusion is one of weak support for the simple age-defined linear hypothesis. As 

defined, this hypothesis can only be tested within the trajectory regressions. However in only two 

trajectories There is strong indication that older Bt patents are more likely to be from public 

sector sources and weak indication that older herbicide resistance patents are more likely to be 

from entrepreneurial sources. In most cases, however, patent age does not appear consistent with 

the scenario of first public sector invention and then entrepreneurial invention before corporate 

invention. More tests on more technological trajectories are needed. Until then, acceptance or 

rejection of this formulation of the linear hypothesis cannot be definitive. 

 The second is the acceptance of the ‘value filter’ hypothesis. The entrepreneurial sector is 

clearly the most likely source of high value inventions (as well as the least likely source of low 

value inventions), both within the specific trajectories and in the industry at large. While the 

public sector is less likely than the corporate sector to produce low value patents, it is 

indistinguishable from the corporate sector in high value patents. Biotech companies and their 

venture capital financiers appear to have filtered out the highest value talent and succeeded in 

creating more of the leading technologies in agriculture. 

 The third conclusion is the originality of publicly funded R&D. The results on the originality 

index for the public sector are the most significant and persistent throughout the study. The case 

for originality is further strengthened by the fact that the number of citations made is a negative 

predictor of public sector patents. Since the originality index is constructed from citations made, 

it has a slight positive correlation with that variable: if more citations are made, there are more of 
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them to be spread out over more technology classes. As a result, the already high originality 

related with public sector patents is probably biased downward.  

 The fourth conclusion is the acceptance of the appropriability hypothesis, but with some 

qualification. University, government, and non-profit organizations are, as hypothesized, 

significantly predicted by low self-citation ratios and thus by low-appropriability technologies. 

The twist comes in the result that startups are a much more likely source than corporations of 

high self-citation ratios and, by correlation, of high appropriability technologies. Moreover, 

corporations have on average much larger internal portfolios on which to build and from which to 

draw self-citations. Thus, we would expect self-citations to be biased higher for corporations. 

This resonates with the value filter hypothesis: biotech startups and entrepreneurs are looking for 

technologies that are not only more valuable but technologies upon which they are able to build 

and from which they are able to appropriate the value created.  

 These results, however preliminary, show a world of commercially useful agricultural R&D 

in which public sector researchers generate the most original and often most general work, and do 

it a bit earlier. Entrepreneurs make their entry in the private sector around higher value tool or 

trait technologies that promise to be highly appropriable, and they build upon them. Corporations 

undertake the most innovation, in terms of generating sheer numbers of patents, but those patents 

tends to be less original or general, and in some cases of more moderate appropriability. While 

this is not the picture of the conventional linear paradigm, it does support the notion of a 

productive division of innovative labor within the complex and multidimensional nature of real 

R&D processes.  
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