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Abstract 
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ventories be explained? In the presence of sufficiently stochastic prices, oil extracting 
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1 Introduction 

Since official records were first kept in the United States (U.S.), in 1920, private interests have 

consistently held significant inventories of crude oil. Over the course of the past few decades, these 

inventories have averaged around 325 million barrels. While these holdings have fluctuated some 

they have been remarkably persistent over the past 70 years, ranging from just over 215 million 

barrels to slightly less than 398 million barrels (see Figure 1). What motivates these substantial 

inventory holdings? One answer is that stockpiles could be held for speculative purposes – betting 

on abnormally rapid price run-ups. An alternative explanation is that petroleum extracting firms 

would like to hedge against substantial swings in extraction costs.1 

Neither explanation is compelling in a deterministic setting. In a deterministic world prices 

would have to rise at the rate of interest to induce firms to hold stockpiles. But if prices increased at 

the rate of interest, rents would typically rise faster than the interest rate. Firms would then prefer 

to delay extraction, so that there would be no fodder from which to build inventories. The answer, 

I believe, must lie in fluctuating prices. 

Reacting to the volatile changes in petroleum prices during the past year, some key players 

in OPEC and a number of members of the U.S. Congress placed the blame on speculators. One 

issue left unanswered in this dialog was the role of privately held inventories. If speculation was 

at play, one would expect resource inventory holders to cash in on abnormally high prices. As I 

discuss below, while there was a negative correlation between spot prices and inventory holdings, 

prices only explain a paltry amount of the variation in inventories. Indeed, inventories did not 

change much even when prices increased or decreased dramatically, as during this past year. It 

seems likely that some other effect played a more important role. 
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An alternative, and I believe compelling, motivation is related to the concept of production
 

smoothing (Arrow et al. (1958), Blanchard and Fisher (1989)). If oil prices are driven by a random 

process, perhaps arising from demand shocks, the induced fluctuations in market price will lead to 

variations in the firm’s optimal extraction rate. So long as there is enough variation in production, 

relative to the overall downward trend in production that must occur for non-renewable resources, 

and so long as it is costly to expand production, firms will wish to hold inventories to guard against 

future cost increases. This explanation will hold true no matter what current price is, and no matter 

what the current level of resources in situ. 

In this paper I explore the implication of such motivations. I start by discussing the con­

ceptual underpinnings of the story in section 2, formally demonstrating that a resource extracting 

firm would generally not acquire stockpiles in a deterministic world. I then analyze a version of 

the model allowing for stochastic prices in section 3. I turn to an examination of the data in section 

4. Here I argue that the variation in spot prices has been sufficient to motivate the acquisition of 

inventories for almost all months during the past two decades. By contrast, I find that the impact 

of spot prices upon both levels of and changes in privately-held oil stocks is modest at best. I 

conclude with a discussion of potential extensions of the model in section 5. 

2 Deterministic Prices and the Incentive to Stockpile 

Consider a price-taking firm engaged in the extraction of oil. The firm in question has an initial 

deposit of the resource of size R0, from which it may choose to extract. Its rate of extraction is 

yt , and its rate of sales, qt , are selected to maximize the discounted flow of its profits. It will be 

convenient to adjust the firm’s problem slightly, and use net additions to inventories, wt = yt − qt , 
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as a control variable in place of sales.
 

The firm’s reserves at instant t are Rt and its inventory holdings are St . I assume the firm 

starts with no inventories. Reserves decumulate with extraction, while inventories accumulate 

according to the difference between extraction and sales: 

Ṙt = −yt ; (1) 

Ṡt = wt . (2) 

When it is actively extracting, the firm bears positive operating costs. I assume marginal 

extraction costs are positive, upward-sloping and weakly convex, with both total costs and marginal 

costs decreasing in R. A simple example of a cost function that has these features is 

c(y,R) = A0 + A1yη/R, (3) 

which is adapted from Pindyck (1980). This function, which combines flow fixed costs with a 

power function of the rate of extraction that is proportional to the inverse of reserves, has two de­

sirable features: There is a range of falling average extraction costs, and extraction becomes more 

costly the greater is the ratio of extraction to reserves; both aspects are consistent with anecdotal 

evidence. In this functional form, η − 1 can be interpreted as the elasticity of marginal extraction 

cost with respect to the rate of extraction. The assumption of weakly convex marginal costs implies 

η ≥ 2. For now, I assume that it is costless to hold inventories; the implications of relaxing this 

assumption are discussed below. 
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Denoting the market price of oil at instant t by Pt , the instantaneous rate of profits is 

πt = Pt [yt − wt ] − c(yt ,Rt ). (4) 

The goal is to select time paths of y and w so as to maximize the present discounted value of the 

flow of profits. 

The firm’s current value Hamiltonian is 

H = Pt (yt − wt ) − c(yt ,Rt ) − λtyt + µtwt , 

where λt and µt are the current-value shadow prices of reserves and inventories, respectively. Pon­

tryagin’s maximum condition gives the necessary conditions for optimization: 

∂c
Pt − − λt = 0; (5)

∂y 

⎧⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩
 

> 0 ⇒ wt = −∞ if St > 0; wt = 0 if St = 0 

Pt − µt = 0 ⇒ wt is indeterminate. (6) 

< 0 ⇒ wt = yt 

In principle, it is possible for the firm to liquidate some of its inventories by choosing w = −∞. As 

such action would radically depress market price it can be ruled out by market clearing. On the 

other hand, if the firm does not hold inventories then w ≥ 0 (i.e., there are no inventories to sell 

from). Moreover, since as a general rule oil firms do not stockpile all their extraction, it seems the 

first branch is empirically implausible. I therefore proceed assuming the firm’s optimal time path 
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of w is based on the middle branch of (6), unless it never pays to acquire inventories.2 

In addition to the first-order conditions above, the solution must satisfy the equations of
 

motion for the shadow values: 

λ̇ = rλ + 
∂c 
∂R

; (7) 

µ̇ = rµ; (8) 

where r is the interest rate. It is apparent that the solution to the differential equation governing µ 

is an exponential, with that shadow value growing at the rate r. 

If the firm is actively extracting over an interval of time then one may time-differentiate eq. 

(5). Then combining with eq. (7), one obtains 

∂c ∂c ∂c˙d[Pt − ]/dt = λ = r[Pt − ]+ , or
∂y ∂y ∂R

  ∂c ∂c ∂c
Ṗt /Pt − r Pt = d[ ]/dt − r + . (9)

∂y ∂y ∂R

Suppose now that the firm finds it optimal to add to inventories over a period of time. Then 

the middle branch of eq. (6) applies; time-differentiating and combining with eq. (8), one infers 

that price would then rise at the rate of interest. The conclusion is that prices must increase at the 

rate of interest for the firm to be willing to add to inventories. But eq. (9) then implies 

∂c ∂c ∂c
d[ ]/dt − r + = 0 ⇐⇒ 

∂y ∂y ∂R 
∂c ∂c 

(∂2c/∂y2)ẏ− (∂2c/∂y∂R)y − r + = 0.
∂y ∂R 
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With the particular functional form in eq. (3), this condition reduces to
 

r y
ẏ/y = − . (10)

η − 1 ηR

If this simple relation fails the firm will either sell all or none of its extracted oil. Since as a general 

rule oil firms do not stockpile all their extraction, it seems the empirically likely outcomes are 

either stockpiling (if eq. (10) holds) or no stockpiling (if it does not). 

Intuitively, if the firm were to hold stockpiles, it would possess two classes of stocks, 

inventories and in situ reserves. These stocks differ in terms of their extraction costs: inventories 

can be costlessly used (since the extraction costs have already been paid), while reserves in the 

ground are costly to extract. In this case, the optimal program must use up the lower cost reserves 

first. However, the only way inventories could exist in the first place is if excess extraction were to 

occur at some point in time, and so it follows that no inventories would ever be held. 

It is worth reiterating that prices are deterministic in this context – i.e., the entire price path 

is known. What is the implication of relaxing this assumption, allowing for stochastic prices? 

3 A Model With Stochastic Prices 

Now suppose that the spot price of oil follows a random process, where the fluctuations in price 

result from demand-side shocks. For concreteness I take this random process to be geometric 

Brownian motion:3 

dPt /Pt = µdt + σdz, (11) 
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where dz is an increment from a standard Wiener process. Convergence of the model requires that
 

the trend in prices does not exceed r, the firm’s discount rate: µ < r. 

The nature of the firm’s decision problem is similar to those studied by Pindyck (1980, 

1982). At each instant the firm’s decision problem is governed by the level of its reserves, its 

inventories and market price. For expositional simplicity I assume the firm chooses to actively 

extract over the time horizon in question; allowing for the possibility the firm might wish to cease 

extraction, or re-activate extraction, can be readily incorporated, though at the cost of some extra 

complexity.4 

Let V (t,Rt ,St ,Pt ) denote the optimal value function when the firm is currently active at 

instant t, with in situ reserves of Rt , inventories of St and market price equal to Pt . The fundamental 

equation of optimality for a currently active firm is (Kamien and Schwartz, 1991): 

−rt max yt ,wt πte + ∂V /∂t − yt ∂V /∂R + wt ∂V /∂S + µPt ∂V /∂P +(σ2Pt 
2/2)∂2V /∂P2 = 0. (12) 

As in the deterministic case, the optimal extraction rate balances current rents against the shadow 

price of reserves in situ, for a firm that actively extracts at instant t: 

∂c ∗Pt − (yt ,Rt ) − ∂V /∂R = 0, (13)
∂y

where y ∗ solves the maximization problem in (12). Also as in the deterministic case, the maximand t 
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in (12) is linear in wt . Thus, optimal adjustments to inventories satisfy 

⎧ 

> 0 ⇒ wt = −∞ if St > 0; wt = 0 if St = 0 
⎪⎪⎪⎪⎪⎪⎨ 

Pt − ∂V /∂S = 0 ⇒ wt is indeterminate. (14)⎪⎪⎪⎪⎪⎪⎩ < 0 ⇒ wt = yt 

As above, if Pt exceeds the shadow value of inventories, here measured by ∂V /∂S, the firm is 

motivated to draw down its inventories as rapidly as feasible. If the shadow value of inventories 

is larger than current price, all production is allocated to inventories. If Pt = ∂V /∂S, then wt is 

indeterminate. 

It is instructive to think of the firm as solving a sequence of problems. At each instant t, 

the firm determines an optimal program, based on the current (and observed) demand shock. This 

consists of extraction and inventory plans for each future instant that maximize the discounted 

expected flow of profits, conditional on current demand, where the expectation is with respect 

to the future stream of prices. This program is subject to the anticipation that reserves will be 

exhausted at the terminal moment (Pindyck, 1980). Then in the next instant, a new demand shock 

is observed and the firm re-optimizes. 

In the analysis I conducted within the deterministic framework, the next step was to time-

differentiate the condition governing the optimal extraction rate. Here, however, the optimal ex­

traction rate will generally be a function of the stochastic variable P, as will the marginal value of 

reserves. As a result, there is no proper time derivative for either side of eq. (13). The stochastic 

analog of the time derivative, Ito’s differential operator, dt
1 E d(•) , is used in its place (Kamien 
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and Schwartz, 1991). Applying this operator to eq. (13) yields:
 

1 1 ∂c 1
E d(P) − E d( ) = E d(∂V /∂R) , (15)

dt dt ∂y dt

where I have omitted the time subscript where there will be no confusion. 

In the deterministic case, one expects the time rate of change in marginal costs to be smaller 

than the present value of current marginal cost.5 Unlike the deterministic case, however, marginal 

costs can rise over time in the context of stochastic demand. Despite the overall tendency for pro­

duction to decline over time, on average, the stochastic nature of extraction can yield an increase in 

anticipated marginal cost if the variation in extraction is sufficiently large, relative to the slope of 

marginal costs. This occurs because the optimal extraction rate is subject to a stochastic influence, 

which in turn means that marginal extraction cost will typically fluctuate. If there is enough vari­

ation in the demand shock, this more than compensates for the reductions in extraction that will 

occur on average. 

From the discussion above, if the firm is to be willing to hold inventories then it must be the 

case that Pt = ∂V /∂S. The analysis leading up to equation (12) in Pindyck (1980) can be applied 

here to show that 1 = r∂V /∂S. It follows that a necessary condition for the firm to dt E d(∂V /∂S) 

be willing to stockpile oil is 

1 
E d(P) = rP. (16)

dt

Intuitively, a firm holding a barrel of stockpiled oil has the option of selling it at instant 

t or holding it for a brief period, and obtaining a capital gain. The opportunity cost of holding 

the inventory is the capitalized value of foregone sales, rP, while the expected capital gain is 
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dt
1 E d(P) . If the latter is not smaller than the former, there will be an incentive to stockpile some 

ore (Pindyck, 1980, 1982). In light of eqs. (13), (15) and (16), it is apparent that there will be an 

incentive to stockpile oil when the anticipated rate of change in marginal extraction cost just equals 

the capitalized level of marginal cost: 

1 
dt

E d( 
∂c 
∂y

) = r 
∂c 
∂y 

. 

I show in the appendix that this condition corresponds to
 

 
∂2 ∂2  

σ2P2  ∂2 ∂2 ∂3  c ∂y c y c c ∂y ∂c −y + + )2 − r = 0. (17)
∂y2 ∂R ∂y∂R 2 ∂P2 ∂y2 + 

∂y3 (∂P ∂y 

It may seem counter-intuitive that a firm holding both reserves and inventories would be 

willing to simultaneously extract and stockpile, as in situ reserves are higher cost to develop than 

are stockpiles. Indeed, such simultaneous activities cannot be part of an optimal program under 

deterministic conditions. But this need not be the case in a stochastic environment. In particular, it 

can pay the firm to use up its higher cost reserves first, holding the lower cost reserves until a later 

date when demand is stochastic (Slade, 1988). This is one interpretation of behavior in my model: 

firms hold onto the lower cost inventory reserves, electing not to sell them until after the higher 

cost (in situ) reserves are exhausted.6 

To make further headway, I assume that extraction costs are given by the specific functional 

form in eq. (3), with η = 2.7 Incorporating this specific form into eq. (17) and simplifying yields 

∂c y ∂y  σ2P2  ∂2y− + − r = 0, or
∂y R ∂R 2y ∂P2 
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  y ∂y σ2P2 ∂2y− + − r = 0. (18)
R ∂R 2y ∂P2 

Let σ2 satisfy eq. (18) as an equality. If σ2 ≥ σ2, the anticipated rate of change in marginal 

extraction costs can equal the capitalized level of marginal costs. In such a scenario the firm has 

an incentive to acquire and hold stockpiles of oil. 

The motive underlying inventory accumulation here is “production smoothing” (Abel, 1985; 

Arrow et al., 1958; Blanchard and Fisher, 1989). The idea is that when the production cost function 

is convex, firms can lower the expected discounted flow of costs by using inventories as a buffer, to 

mitigate abrupt changes in production that are induced by fluctuating demand. In the present case, 

this motive is offset somewhat by the overall expected downward trend in production associated 

with a non-renewable resource. Even so, the fundamental wisdom in the literature on inventories 

can be applied here, given enough variability in demand. 

4 Empirical Analysis 

The model presented above leads naturally to an empirical investigation. Two types of empirical 

evidence are germane here. At a somewhat less formal level, if production smoothing motivates 

inventory holding one would expect greater variation in sales than in extraction. Figure 2 provides 

visual evidence to this effect. In this figure, I plot monthly observations of sales (the left-most 

panel) and extraction (the right-most panel) over time; it is readily apparent that sales rates exhibit 

greater variability than do extraction rates. 

At a more formal level, if production smoothing motivates inventory holding it must be the 

case that σ2 ≥ σ2. In order to test that condition, one first needs to identify the linkage between 
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optimal extraction and the state variables P and R.
 

To identify the impact of these state variables upon extraction I utilize data available at the 

U.S Energy Information Administration (EIA) website (http://www.eia.doe.gov/). There, one can 

find statistics on spot prices and U.S. crude oil reserves and production. There are three issues that 

must be confronted. The first issue is that data are only available at the aggregate level, whereas 

the model above describes motivations to the individual firm. If one assumes that marginal costs 

are linear, the aggregate results I discuss below map naturally into firm-level implications.8 

The second issue is the potential endogeneity of one of the key right-side variables, namely 

price. To the extent that the endogenous variables in the regressions I report below, U.S. reserves 

and production, do not influence the world price of crude oil, one can safely ignore the potential 

endogeneity of price. This seems likely to be the case for at least two reasons. First, U.S. pro­

duction was a relatively small part of world production during the sample period, and so would 

seem unlikely to have exerted much impact on global supply. The largest share of world produc­

tion occurred in 1986; between 1986 and 2008, the share of U.S. production in total world output 

fell monotonically. By 2008 the U.S. produced less than 8.5% of world output. Second, Adelman 

(1995) argues that the Organization of Petroleum Exporting Countries (OPEC) has played a sig­

nificant role in determining price during my sample period. Since OPEC sets target prices, and 

associated quotas, based on world market conditions, it seems implausible that they would adjust 

their actions on the basis of U.S. producer behavior. This point also suggests that U.S. producer 

behavior is unlikely to exert much influence on the world equilibrium price. 

The third issue is that of data frequency: Reserves are reported annually, while spot prices, 

production and stockpiles are reported monthly and annually.9 To match the data on reserves 

with the monthly data on all other variables of interest, I use a strategy in the spirit of Chow and 

12
 

http:http://www.eia.doe.gov


Lin (1971) and Santos-Silva and Cardoso (2001). I first note that, while the theoretical model I
 

presented above assumed zero net reserve adjustments, Ṙ+y = 0, in practice these adjustments are 

not identically equal to zero. This is because reserves are regularly adjusted as firms’ information 

concerning their deposits is improved, or as new deposits are discovered. Improved information is 

generally the result of “development drilling,” the practice of drilling additional wells to identify 

the size and scope of deposits. New deposits result from exploratory drilling. The EIA reports 

the number of “development wells” and the number of “exploratory wells,” at both the annual and 

monthly level. Because both current production and current development drilling can arguably 

be influenced by current reserves, I use lagged values of these variables in the regression reported 

below. In addition, one might imagine the magnitude of drilling could matter. The left-side variable 

in this regression is the change in reported reserves summed with production. While data are only 

available to estimate this relation at the annual level, that relation ought in principle to also hold 

true at the monthly level. I therefore start by estimating an empirical model of net reserve changes 

using annual data, and then employ this regression model to produce synthetic data for reserves at 

the monthly level. This latter data is then exploited, along with the monthly data on oil prices and 

private inventories, to estimate production at the monthly level. 

While data on reserves and production is available for many years, data on development 

and exploratory drilling is only available after 1973.10 The sample period for this regression, then, 

is comprised of the years from 1973 to 2010. Reserves, in millions of barrels, are reported as of 

31 December in each calendar year; accordingly, I use the reported value for year t as the starting 

reserves for year t + 1, for each year in the sample. Table 1 reports the results of two regressions, 

one that uses OLS (allowing for robust standard errors) and one that allows for serial correlation. 

These results support the inclusion of the lagged number of development holes. The lagged num­
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ber of exploratory holes and lagged volume of drilling, as measured by million of feet drilled, are
 

of questionable significance in the OLS results; this regression explains roughly 22% of the vari­

ation in the left-side variable. In the regression that allows for serial correlation, lagged volume 

of drilling is plainly significant while the coefficient on the lagged number of exploratory holes 

remains borderline significant. Further, the first-order serial correlation coefficient is relatively 

large, and this regression explains roughly 42% of the variation in the left-side variable. Combin­

ing these remarks, it appears that allowing for serial correlation provides the best overall model of 

net changes in reserves. 

Since reserves are reported annually, I interpolate predicted reserves during the other months. 

For each month, I form the fitted value for the change in reserves, and sum this with reported ex­

traction. In any particular year, I apportion the observed change in reserves between the 12 months 

in proportion to the variable just constructed. Under standard assumptions, this construct is an 

unbiased estimator of the true (but unobserved) monthly levels of reserves. So long as the mea­

surement error implied by this process is uncorrelated with the disturbance in the regression model 

for monthly extraction levels, this approach will generate unbiased estimates of the marginal effects 

of interest.11 

The next step is to regress the fitted value R, real spot pries P and private inventories on ob­

served oil production. The optimal level of production, as described in (13), should be determined 

by a balancing of rents with marginal value of reserves. The latter could in principle depend on a 

combination of prices , inventories and reserves. If marginal costs are inversely related to reserves, 

optimal output will be proportional to the product of price and reserves, as well as the product 

of reserves with marginal value ∂V /∂R. To this end, I regress linear and quadratic terms in R, as 

well as interaction terms involving P,R and S12 upon y; this regression model can be interpreted 
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as a Taylor’s series approximation of marginal value multiplied by R. In light of the time-series
 

nature of the data, I allow for serial correlation. To enhance comparability of observations from 

different months, I convert production into values per day (in millions of barrels). Table 2 presents 

results from the regression analysis of extraction, for three combinations of variables. Regressions 

1 and 2 include linear and quadratic effects for P and R, along with interaction effects including 

various combinations of P,R and S. Many of these variables are significant in regression 1 (OLS). 

That noted, the results from regression 2 indicate serial correlation is quite likely—the first-order 

parameter, rho, is very large. The significance of various explanatory variables is less compelling 

in this regression, with only P,PR,PR2 ,PRS and PR2S having statistically significant coefficients. 

The specification in regressions 1 and 2 allow the state variable S to play an important role in 

∂V /∂R. But one might anticipate R and S entering the value function additively, as they are substi­

tute sources of sales. To investigate this possibility, I ran comparable regressions to 1 and 2 after 

dropping the seven variables involving S; these results are presented as regressions 3 and 4. The key 

point here is that dropping these explanatory variables leads to a substantial increase in summed 

squared errors; indeed, the hypothesis that all coefficients associated with variables including S are 

jointly zero is easily rejected. The specification in regression 1 also points to the possible lack of 

stock effects in costs, in that variables and interactions not including R are present. But the results 

from regression 2 run counter to this interpretation, as the only significant variables involve R. To 

delve further into this question, regressions 5 and 6 drop the five variables not including R. Here 

again this revision to the regression equation significantly raises the summed squared errors, and 

the hypothesis that the coefficients associated with variables including R are jointly zero is easily 

rejected. 

One might object that other factors such as technology, taxes and distribution costs might 
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influence extraction. As the regressions in Table 2 omit these variables, my results would be
 

suspect if these factors were correlated with my regressors. To check on this possibility, I reran 

regressions 1, 3 and 5 allowing for yearly fixed effects. Results are given in Table 3 (in the interest 

of brevity I do not report the annual fixed effects). As in the first set of results, many variables 

are statistically significant in the regression that includes all variables, and the variations that omit 

regressors involving S or not involving R are not supported. In addition, the estimated coefficients 

are generally similar to those reported in Table 2, as are signs and significance. Finally, the annual 

fixed effects tend to change over time, with positive effects for earlier years and negative effects 

for more recent years. This suggests the omitted factors identified above might well matter. 

∂y ∂yThe regression results allow me to estimate the marginal impacts and ∂2y/∂P2,
∂R , ∂P 

which can then be used to calculate the implied value of σ2 from eq. (18). I sue the parameter 

estimates from regression 1 allowing for fixed effects, though the broad pattern I describe below 

holds for other specifications. There are induced values for each month in the sample, so rather 

than list all these values I present a variety of statistics in Table 5, including the first three quartiles, 

mean, 90%, and standard errors. I report these values for three values of the real discount rates: 

1%, 2% and 3%. 

During the sample period, the variance in monthly real spot prices is .2086.13 It is notewor­

thy that the sample variance exceeds the mean and median level of σ2 at each of the three discount 

rates, as well as the value at the 75% for the small real discount rate. At the medium real discount 

rate, the implied values of σ2 exceed the estimated variance σ2 for slightly less than 75% of the 

observations. While this evidence is not overwhelming, I think it solidly supports the empirical 

plausibility of production smoothing as a motive for holding oil inventories.14 

Of course, observing that variations in price are sufficient to motivate production smoothing 
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does not imply there are no other potential explanations for inventory holding. One obvious pos­

sibility is that firms hold inventories in order to cash in on unanticipated price increases, whether 

they extract more or not in the face of such price increases. Such an explanation has much in com­

mon with the idea that wild gyrations in crude prices are related to (and perhaps even caused by) 

speculation. If such an explanation were correct, one would expect to see sharp increases in crude 

prices leading to clear reductions in inventories. 

Figure 3 shows weekly changes in crude oil inventories and price levels, as ratios of their 

respective values at the start of 1986 (when weekly data is first available). Significant movements 

in the weekly changes in stocks occurred during the period from 1986 to 2000, despite the fact that 

crude prices were relatively constant during that period. While the pattern of changes in stocks is 

less pronounced after 2001, when crude prices started to rise, there is still no clear indication that 

changes in stocks are more likely to be negative during periods of high prices.15 And while it does 

appear that changes in crude stocks were less volatile after 2000, this does not indicate that agents 

were more likely to speculate on price changes as spot prices increased. On balance, then, there 

seems to be little evidence to suggest firms are holding stocks so as to make a killing when prices 

rise dramatically. 

Perhaps speculators held inventories in anticipation of rapidly rising prices, as opposed to 

basing their decision on current price. If so, it seems plausible that such agents would take their 

cues from existing futures markets. When futures prices were well in excess of current spot prices, 

a situation referred to as contango, there would be a motive to buy and hold inventories. To get at 

this hypothesis, I collected futures data from the EIA webpage, which lists data from four futures 

contracts. The first of these, “contract 1,” lists futures prices for delivery in the following month. 

As this delivery could be within a week or so of the trading date, these futures prices can be very 
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close to current spot prices, particularly as the end of the month approaches. “Contract 2” lists
 

futures prices for delivery in the month after contract 1; “contract 3” is for delivery in the month 

after contract 2, and “contract 4” is for delivery in the month after contract 3. following month. 

Since the data from contract 1 seem less likely to produce conditions favorable to speculation, 

especially at the end of the month, I based the analysis reported below on contract 2 data. Weekly 

data are available for spot prices, Futures 2 contract prices, and inventory levels from the first week 

in January, 1986 to the first week in February, 2009. 

While the presence of contango suggests potential benefits from speculation, one also needs 

to take opportunity costs into account. Irrespective of the presence or absence of holding costs, the 

‘buy and hold’ strategy ties up capital resources for a period of time; how long depends on how 

long the speculator must wait before selling. Accordingly, for each date I calculated the number 

of weeks until the start of the month in which the contract was to be exercised; this variable is 

termed “week” in the results reported below. A literal interpretation would set the opportunity 

cost of tying up capital would be equal to the present value of $1 received in the future week in 

question. Under such a strict interpretation, one measure of the net benefit from speculating would 

be ln(Pt,T ) = T ln(pt ), where Pt,T is the price of a future contract at time t for delivery in T periods 

and pt is the spot price in period t. Under this interpretation, a regression of changes in inventories 

upon the regressors ln(Pt,T ),T ln(pt ), and T would yield coefficients k1,k2 and k3, with k1 positive 

and the other two negative; it would also explain much of the variation in stock changes. (A literal 

interpretation of the coefficients would be k2 = −(1 + r)and k3 = c, where r is the market interest 

rate and c is the unit cost of holding inventory for a week). A less strict interpretation would regress 

changes in inventories upon the regressors ln(Pt,T /pt ) and T , where presumably the coefficient 

on the former would be positive (reflecting the sensitivity of stockpiling decisions to potential 
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gains) and the coefficient on T would be negative, reflecting the opportunity cost of tying up
 

capital while stockpiling. Alternatively, one might replace the log-ratio of futures to spot price with 

the difference between future and spot price; the coefficients would take similar interpretations. 

In the results reported below, I refer to these regressions as ‘Regression 1,’ ‘Regression 2’ and 

‘Regression 3,’ respectively. 

The results from these three regressions are collected into Table 5. Column 2-4 report re­

sults from, respectively, Regressions 1, 2 and 3; standard errors are listed in parentheses below the 

corresponding point estimates. One is struck by the poor performance of each regression. Indeed, 

the only variable that exerts a statistically significant effect is the difference between future and 

spot price, as reported in Regression 3; even here the significance is only at the 10% level. None 

of the three regressions explain any meaningful amount of the variation is inventory adjustments. 

Overall, these results indicate that speculation had little to do with inventory accumulation during 

the sample period. 

5 Conclusion 

In this paper, I present a model of firm behavior when oil prices are stochastic. In this frame­

work, the firm has an incentive to hold inventories if prices are sufficiently volatile. Using data on 

monthly crude prices and privately-held U.S. inventories, I find evidence that there was sufficient 

volatility in crude prices over the period from January 1986 through December 2009 to motivate 

inventory holding. By contrast, the evidence that firms held inventories to speculate on price move­

ments does not seem very strong. I believe the conclusion is that inventories are more likely to be 

motivated by attempts to smooth marginal production costs than by speculative motives. 
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My model assumes that the entire cost of production is born at the deposit. In particular,
 

extracted oil can instantly and costlessly be delivered to market, and storage of inventories is 

costless. These assumptions may be legitimately questioned as unrealistic. Shipping costs for 

crude oil can be a significant share of delivered price, and there is often an important lag between 

extraction and sale. However, my central findings seem likely to be robust to each of these potential 

extensions. 

Adding distribution costs to the model above has no major effects upon my central results. 

While such an alteration lowers the expected gains from holding inventories, it has an equivalent 

effect on current profits. Correspondingly, the key comparison is between the capitalized value 

of “distribution rents” (price less marginal distribution cost) and the expected rate of change in 

distribution rents. If the unit cost of distribution is taken as constant, then my model may be 

applied by interpreting price as distribution rent. This suggests smaller initial sales (and higher 

initial price) in conjunction with slower growth of prices over time. Such an alteration reduces the 

value of inventories, but not the finding that sufficient variation in prices will induce firms to hold 

stockpiles. 

Adding storage costs to the model also leaves the central result unchanged. While the 

presence of storage costs would make it less desirable to hold inventories, there can still be a 

motive with sufficiently variable demand. The results in Table 4 suggest that demand is often 

considerably more variable than required to motivate the holding of inventories. Thus, it seems 

plausible that the results reported above are robust to storage costs. 

It seems most plausible that there is a lag between extraction and sales, as crude oil must be 

refined prior to delivery of the final good. An extension of the analysis to allow for such lags can 

be constructed by distinguishing between the date of sales and the date of extraction. Abel (1985) 
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showed that competitive firms would generally have an incentive to hold inventories in the context 

of lags between production and sales, to facilitate speculation. His results would seem applicable 

here as well. Indeed, Blanchard and Fisher (1989) suggest that this motive may be at least as 

important as the production smoothing motive in explaining inventories of most commodities. 
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6 APPENDIX
 

To evaluate the anticipated rate of change in marginal extraction costs, dt
1 E d(∂

∂

c
y ) , I first note that 

the optimal extraction rate is an implicit function of R,S and P. Applying Ito’s Lemma yields 

1 ∂c ∂2c 1 ∂2c 1 ∂3c 1
E d( ) = E d(y ∗ ) − y + E d(y ∗2) . (19)

dt ∂y ∂y2 dt ∂y∂R 2 ∂y3 dt

As y ∗ is a function of P,S and R, It’s Lemma implies 

1 ∂y ∂y 1 ∂2y∗E d(y ∗ ) = w − y + σ
2P2 , (20)

dt ∂S ∂R 2 ∂P2 

1 ∂y
E d(y ∗2) = ( )2

σ
2P2 . (21)

dt ∂P

If the firm is to be willing to acquire and hold inventories it must be the case that ∂V /∂S = P. 

Since market price is plainly independent of the firm’s reserves one has ∂2V /∂R∂S = 0, in which 

case ∂y/∂S = 0 and the first term on the right of eq. (20) vanishes. Substituting eqs. (20) and (21) 

into eq. (19) then yields eq. (17) in the text. 
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Notes 

1 A third explanation is that inventories might be held to insure against running out of the 

key resource (the so-called “stock-out” motive). It is hard to believe this motive played a major 

role in the U.S. oil industry, however: average daily input into U.S. refiners during the same period 

was just over 14 million barrels per day, and never exceeded 16.5 million barrels per day. As 

such, the stockpile of crude oil would have supplied all U.S. refiners for almost 20 days. This 

point notwithstanding, the model I discuss below can be adapted to allow for a stock-out motive 

by including delivery constraints. I discuss this extension in the conclusion. 

2 If Pt < µt the firm would be inclined to sell all extracted oil along with any accumulated 

inventories. If any inventories were held the firms sales rate would then be infinite, which as I note 

in the text would violate market clearing. But if the firm has never acquired any inventories there is 

nothing to prevent Pt < µt . In fact, this is the most likely outcome in the deterministic framework. 

3 While I assume geometric Brownian motion for analytic convenience, a number of previous 

authors have made similar assumptions (Brennan and Schwartz, 1985; Dixit and Pindyck, 1993; 

Mason, 2001; Pindyck, 1980; Slade, 1988). 

4 See Brennan and Schwartz (1985), Dixit and Pindyck (1993) and Mason (2001) for analysis 

of such a model. 

5 As rents rise at the rate of interest, while price generally rises less rapidly, it follows that 

marginal costs must also rise at less than the rate of interest. 
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6 For example, in December of 2008 Royal Dutch - Shell PLC anchored a supertanker full of
 

crude oil off the British coast in anticipation of higher prices for future delivery. 

7 3With these assumptions ∂3c/∂y = 0. As ∂3c/∂y3 exerts a positive influence on the expres­

sion in eq. (17), one can argue that this assumption generates the least compelling case for holding 

inventories. 

8 If marginal costs are linear, aggregate level results map naturally into results at the level 

of the individual field-reservoir. If one is willing to draw an analogy between individual field-

reservoirs and firms these results are directly relevant to the model discussed in section 3 above. 

9 In fact, spot prices are reported on a daily, weekly, monthly and annual basis. 

10 Moreover, there was an idiosyncratic (positive) change between 1969 and 1970, reflecting 

the addition of Alaskan reserves. As these reserves were firmly in place before the period in 

which monthly data is available, it seems best to restrict observations to the post-1970 period in 

conducting the annual regression. 

11 However, the approach will impact the standard errors. The results reported below are based 

on robust standard errors, and so correct for this possibility. An alternative approach to the one I 

use here is to estimate a relation between extraction and prices and reserves using annual data. 

The disadvantage of using annual data is the corresponding reduction in number of observations. 

A regression using annual data generates similar results to those reported in Table 2, in the sense 

that estimated coefficients have the same signs and are generally the same order of magnitude. 

However, because production data are only available after 1985, only 25 annual observations are 

available. With such a small data set there are very few degrees of freedom, and none of the 
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coefficients are statistically significant.
 

12 The EIA website reports various measures of inventories. Data on stockpiles are available 

including or excluding the U. S. strategic petroleum reserve (SPR). As the SPR is both publicly 

held, and hence motivated by political – as opposed to economic considerations – it seems clear 

that the data excluding the SPR is preferable for my purposes. Netting out SPR holdings yields 

a measure of private inventory holdings. One might legitimately object to this measure of private 

inventories on the grounds it includes stocks held at refineries or oil in pipelines. The first of 

these which are really more representative of raw materials in the production process, while the 

second reflect oil in transit; neither of these seems representative of the sort of buffer stock my 

model envisions. Accordingly, I use data on stocks held at ‘tank farms’, which do seem more 

representative of the sort of inventories envisioned by the model. 

13 Assuming that prices evolve according to geometric Brownian motion implies that prices 

are log-normally distributed, i.e., the natural log of prices is normally distributed. During the 

sample period, the mean and variance of the natural log of real monthly spot prices are 2.894 and 

.2086, respectively. 

14 As indicated in eq. (10), firms could be motivated to hold inventories even in the absence of 

stochastic demand so long as the percentage change in production and the ration of production to 

reserves matched up just right. To investigate this possibility, I formed the discrete time approxi­

mation to percentage change in production, Δyt /yt = (yt+1 − yt )/yt and the ration of production to 

reserves, yt /Rt , for each month t in the sample period. Assuming η = 2, the construct Δ/y + y/2R 

would equal the interest rate. For the sample period, the average value of this construct is 4.2273, 
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implying an interest rate of over 422%. Alternatively, one could run a linear regression of Δy/y 

on y/2R; such a regression should yield an intercept of r/η − 1 and a slope coefficient of −1/η. 

Performing such a regression yields estimated coefficients -.0742 for r/η−1 and .00822 for −1/η. 

Plainly, these results do not lend much support to the notion that firms would have been motivated 

to hold inventories absent stochastic demand. 

15 In fact, the average change in stocks was negative prior to 2000 (-216,726.2 barrels) and 

positive after (179,228.6 barrels). This difference in average values, while intriguing, is not sta­

tistically significant: the corresponding standard deviations were two orders of magnitude larger. 

Thus, there is no evidence of significantly smaller values for changes in stocks as prices increased. 

A similar patter emerges if one compares levels of inventories against price. During the sample 

period there are dramatic swings in price, from below 50% of the initial level to over 550% of the 

initial level. But even with these dramatic swings in price crude stock levels are always within 

20% of the initial value. More to the point, there seems to be little evidence that stocks are drawn 

down during times of particularly large prices, nor are stocks built up during periods of low prices. 
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Figure 1: U.S. Petroleum Stocks
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Figure 2: extraction (left), sales (center) and inventories (right): crude oil, natural gas and coal
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Figure 2: U.S. Petroleum Stocks
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Figure 3: Changes in Stocks and Prices
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Table 1: Net changes in reserves as a function of development and exploratory drilling 

Regression 
variable (1) (2) 
lagged development holes .1666 .1489 

(.0624) (.0520) 
lagged exploration holes -1.489 -1.228 

(.9247) (.7942) 
lagged drilling -6.400 -6.061 

(4.629) (2.062) 
constant 2307.8 2265.3 

(469.67) (257.46) 
ρ —­ -.513 

R-squared .219 .418 

Note: standard errors in parenthesis 
number of observations = 38 
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Table 2: Extraction as a function of price, reserves and inventories 

Regression 
variable (1) (2) (3) (4) (5) (6) 
R .0036∗∗∗ .000062 .0053∗∗∗ .00031 .00028 -.00054 

(.00081) (.00093) (.00072) (.00085) (.00023) (.000492) 
R2 -6.56e-08∗∗∗ 4.77e-09 -9.67e-08∗∗∗ 1.7e-09 1.86e-09 1.60e-08 

(1.54e-08) (1.83e-08) (1.38e-08) (1.69e-08) (4.52e-09) (1.02e-08) 
P 10.32∗∗∗ -4.456∗ 4.464∗∗∗ .7432 —­ —­

(3.116) (2.551) (.5827) .5814 
P2 -.0918∗∗∗ -.01590 -.0205 -.00938∗∗ —­ —­

(.0252) (.0201) (.0052) (.00414) 
PR -.00067∗∗∗ .00035∗∗ -.00036∗∗∗ -.000058 -.000052∗∗∗ -9.41e-06 

(.000213) ( .00018) (.00004) (.000045) (7.98e-06) ( 6.74e-06) 
PR2 8.17e-09∗∗ -7.01e-09∗∗ 6.8e-09∗∗∗ 1.01e-09 1.72e-09∗∗∗ 8.44e-11 

(3.56e-09) (3.0e-09) (7.83e-10) (8.45e-10) (3.0e-10) ( 2.40e-10) 
P2R 4.32e-06∗∗∗ 8.31e-07 1.0e-06∗∗∗ 4.64e-07∗∗ 1.38e-0∗∗∗ 5.50e-08 

(1.18e-06) (9.4e-07) (2.44e-07) (1.95e-07) (5.11e-08) (3.95e-08) 
PS -.000061∗∗ .000028 —­ —­ —­ —­

(.000021) (.000018) 
PS2 1.13e-10 -1.9e-11 —­ —­ —­ —­

(3.42e-11) (2.69e-11) 
P2S 4.22∗∗∗ 6.45e-08 —­ —­ —­ —­

(1.3e-07) (1.09e-07) 
PRS 3.31∗∗∗ -2.06e-09∗ —­ —­ 2.65e-10∗∗∗ 1.88e-11 

(1.24e-09) (1.09e-09) (5.13e-11) (4.51e-11) 
PRS2 -5.41e-15∗∗∗ 6.77e-16 —­ —­ -1.7e-16∗ -8.67e-17 

(1.55e-15) (1.22e-15) (9.19e-17) (7.02e-17) 
P2RS 1.21e-15 -3.36e-12 —­ —­ -5.0e-13∗ -1.87e-13 

(6.09e-12) (5.08e-12) (2.88e-13) (2.29e-13) 
PR2S -1.9e-14 3.95e-14∗∗ —­ —­ -7.96e-15∗∗∗ 1.30e-15 

(1.65e-14) (1.55e-14) (1.49e-15) (1.31e-15) 
constant -40.49∗∗∗ 2.767 -62.45∗∗∗ -.8895 -.1283 10.61∗ 

(10.27) (11.65) (11.59) (10.48) (2.889) (5.915) 
ρ —­ .926 —­ .920 —­ .924 
SSE 17.44 4.869 20.36 5.327 21.787 5.088 
R-squared .948 .685 .940 .674 .936 .676 

Note: standard errors in parentheses 
dependent variable: production, million barrels per day 
number of observations = 289 
*: significant at 10% level 
**: significant at 5% level 
***: significant at 1% level 
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Table 3: Fixed effects regression of extraction 
Regression 

variable (1) (2) (3) 
R .00041∗∗∗ .00039∗∗∗ .00038∗∗∗ 

(.00062) (.000058) (.000044) 
R2 -5.27E-09∗∗ -4.36e-09∗ -4.06∗∗ 

(2.43e-09) (2.34e-09) (1.65e-09) 
P 3.862 .4060∗ —­

(2.481) (.2473) 
P2 -0.06388∗∗∗ -.00124 —­

(.0179) (.00312) 
PR -0.00023 -.000041∗∗ -.000016∗∗ 

(.00017) (.000018) (6.67e-06) 
PR2 2.21E-09 9.43e-10∗∗∗ 2.99e-10 

(3.04e-09) (3.27e-10) (2.31e-10) 
P2R 3.02E-06∗∗∗ 7.86e-08 4.33e-08 

(8.4e-07) (1.47e-07) (3.85e-08) 
PS -.000026 —­ —­

(.000017) 
PS2 4.17E-11∗ —­ —­

(2.53e-11) 
SP2 3.26E-07∗∗∗ —­ —­

(9.14e-08) 
SPR 1.35E-09 —­ 7.22e-11 

(1.03) (4.62e-11) 
S2PR -2.05E-15∗ —­ -1.53e-16∗∗ 

(1.15e-15) (7.26e-17) 
SP2R -1.53E-11∗∗∗ —­ -1.45e-13 

(4.27e-12) (2.23e-13) 
SPR2 -5.23E-15 —­ -1.08e-16 

(1.54e-14) (1.28e-15) 

SSE 5.907 6.510 6.322 

Note: standard errors in parentheses
 
dependent variable: production, million barrels per day 
number of observations = 289 
*: significant at 10% level 
**: significant at 5% level 
***: significant at 1% level 
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Table 4: Implied lower bounds on variance in price
 

statistic ∂y/∂R y/R (∂2y/∂P2) ÷ (y/P2) σ2(.01) σ2(.02) σ2(.03) 
25% 0.000257 0.000195 0.0176 0.0297 0.0600 0.0918 
mean 0.000275 0.000256 0.0527 0.0695 0.1417 0.2141 
median 0.000281 0.000233 0.0261 0.0642 0.1295 0.1927 
75% 0.000293 0.000333 0.0535 0.0922 0.1874 0.2825 
90% 0.000300 0.000378 0.1111 0.1248 0.2577 0.3911 
s.d. 0.000023 0.000117 0.0753 0.0525 0.1086 0.1649 

note: σ2(r) listed for annual discount rates: r = .01, r = .02 and r = .03 
variance of monthly real spot price during sample period = .2086 

Table 5: Analysis of Contango 

variable Regression 1 Regression 2 Regression 3
 

ln(Pt,T ) -507.47 — — 
(1037.9) 

T ln(pt ) 85.619 — — 
(169.17) 

ln(Pt,T /pt ) — 5981. — 
(4518.6) 

Pt,T − pt — — 248.36* 
(142.35) 

T -269.46 5.6496 4.6642 
(559.79) (93.293) (93.24) 

constant 1614.0 11.8372 4.7097 
(559.79) (574.37) (573.31) 

R2 .0002 .275 .0025 

number of observations = 1205 
*: statistically significant at the 10% level 
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